Учим математике, Теория и практика, 7-11 классы, Рыжик В.И., 2015.
Предлагаемая книга — труд известного педагога, основанный на огромном опыте работы в разных типах школ. В ней автор размышляет о проблемах школьного математического образования, показывает, какие профессиональные задачи решает учитель математики; основное внимание уделяется решению методических задач: рассматриваются различные примеры и задачи с вариантами их решения.
Издание предназначено для учителей.
ТЕОРЕМА ПИФАГОРА И ВОКРУГ НЕЕ.
Теорема Пифагора играет важнейшую роль в математике. Поэтому естественно выглядит такой курс планиметрии, в котором она вводится как можно раньше. Что и сделано в учебниках А. Александрова.
Традиционно она доказывалась в нашей школе, исходя из подобия треугольников, т. е. довольно далеко от начала курса. Идея А. Александрова состояла в возможно более раннем введении тригонометрии, для чего, в частности, была нужна теорема Пифагора. Но коль скоро теорема Пифагора появляется рано, то ее можно использовать для доказательства таких утверждений, которые обычно доказывались на основании подобия. Что я и сделал, подобрав соответствующие задачи.
Далее. Теорема Пифагора может быть сформулирована как теорема о площадях, как было у Евклида, и как вычислительная теорема в виде формулы для косвенного нахождения расстояния между точками (длины отрезка). (Замечу, что для построения прямого угла нужна обратная ей теорема.) Чрезвычайно полезно для математического развития школьников, для понимания формулы, приводить примеры ее разнообразного использования.
Содержание.
От автора.
1. Такая разная школьная геометрия.
2. Теорема Пифагора и вокруг нее.
3. Об углах между скрещивающимися прямыми и немного о прочих углах.
4. О длине окружности и площади поверхности.
5. О роли векторов в школьной математике.
6. Векторы и тонкие вопросы школьной математики.
7. Стереометрия на векторах.
8. Выход в четырехмерное пространство.
9. Единая математика.
10. О пользе множеств.
11. Разрушение «стены».
12. Непрерывность в геометрии. А также.
13. Тригонометрические функции через интеграл.
14. Ранняя тригонометрия.
15. Ищите тангенсы!.
16. Сориты Л. Кэрролла.
17. Однажды на уроке.
Купить .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Теги: учебник по математике :: математика :: Рыжик :: 7 класс :: 8 класс :: 9 класс :: 10 класс :: 11 класс
Смотрите также учебники, книги и учебные материалы:
- Качественные свойства решений дифференциальных уравнений и смежные вопросы спектрального анализа, Асташова И.В., 2017
- Десять лекций по вейвлетам, Добеши И., 2001
- Теория и практика обработки результатов измерений, Яноши Л., 1968
- Практика теории многомерных цифро-векторных множеств, Кочергин В.И., 2012
- Учим детей решать задачи и проблемы, Жермен-Уильямс Т., 2020
- Математика, учебное пособие для поступающих в вузы, Власова Е.А., Облакова Т.В., 2019
- Математика, рабочая тетрадь №4, учебник для специальных общеобразовательных школ и классов, для учащихся с нарушением зрения, слабовидящих, в 4 частях, часть 2, Жакупова Г.Ш., Орехова Н.В., Лебедева Н.В., 2016
- Математика, рабочая тетрадь для 3 класса специальных школ, классов, для детей с нарушением интеллекта, Карипжанова Ш.Ж., 2020