Курс дифференциального и интегрального исчисления, Том 3, Фихтенгольц Г.М., 2001

Курс дифференциального и интегрального исчисления, Том 3, Фихтенгольц Г.М., 2001.

Фрагмент из книги:
Понятие предела пронизывает весь курс анализа, но в разных его частях принимает весьма различные формы.
Мы начали с изучения простейшего случая — предела варианты, пробегающей нумерованную последовательность значений (22, 23]; применительно к нему и была подробно развита теория пределов (глава 1). Затем понятие предела было обобщено на случай предела функции от одной или от нескольких переменных [52, 165]*. Предельный процесс усложнился, но в общем сохранил свой характер.

Курс дифференциального и интегрального исчисления, Том 3, Фихтенгольц Г.М., 2001


Обобщение на случай произвольной области.
Рассмотрим теперь произвольную (конечно, связную) область (D), ограниченную одной или несколькими кусочно-гладкими кривыми и при этом конечную или простирающуюся в бесконечность. Эту область мы впредь будем предполагать открытой. В таком случае каждая ее точка является внутренней [163] и принадлежит ей вместе с некоторой, скажем, прямоугольной окрестностью. Так как к последней приложимы рассуждения предыдущего n°, то при выполнении условия (А) в окрестности каждой точки области (D) для выражения (2) существует первообразная и даже бесконечное множество первообразных, разнящихся одна от другой на постоянную. Однако согласование всех этих первообразных так, чтобы получилась однозначная первообразная для всей области (D), оказывается не всегда возможным! Вопрос здесь зависит от характера самой области.

Чтобы обеспечить существование такой однозначной первообразной в общем случае, приходится наложить на область (D) своеобразное ограничение. Его можно сформулировать так: какой бы простой замкнутый контур, лежащий в области (D), ни взять, ограниченная извне этим контуром область должна также целиком принадлежать области (D). Иными словами, область не должна содержать «дырок», даже точечных. Связную область, обладающую этим свойством, называют односвязной.

СОДЕРЖАНИЕ.
ГЛАВА ПЯТНАДЦАТАЯ. КРИВОЛИНЕЙНЫЕ ИНТЕГРАЛЫ. ИНТЕГРАЛ СТИЛТЬЕСА.
§1. Криволинейные интегралы первого типа.
§2. Криволинейные интегралы второго типа.
§3. Условия независимости криволинейного интеграла от пути.
§4. Функции с ограниченным изменением.
§5. Интеграл Стилтьеса.
ГЛАВА ШЕСТНАДЦАТАЯ. ДВОЙНЫЕ ИНТЕГРАЛЫ.
§1. Определение и простейшие свойства двойного интеграла.
§2. Вычисление двойного интеграла.
§3. Формула Грина.
§4. Замена переменных в двойном интеграле.
§5. Несобственные двойные интегралы.
ГЛАВА СЕМНАДЦАТАЯ. ПЛОЩАДЬ ПОВЕРХНОСТИ. ПОВЕРХНОСТНЫЕ ИНТЕГРАЛЫ.
§1. Двусторонние поверхности.
§2. Площадь кривой поверхности.
§3. Поверхностные интегралы первого типа.
§4. Поверхностные интегралы второго типа.
ГЛАВА ВОСЕМНАДЦАТАЯ. ТРОЙНЫЕ И МНОГОКРАТНЫЕ ИНТЕГРАЛЫ.
§1. Тройной интеграл и его вычисление.
§2. Формула Гаусса—Остроградского.
§3. Замена переменных в тройных интегралах.
§4. Элементы векторного анализа.
§5. Многократные интегралы
ГЛАВА ДЕВЯТНАДЦАТАЯ. РЯДЫ ФУРЬЕ.
§1.Введение.
§2. Разложение функций в ряд Фурье.
§3. Дополнения.
§4. Характер сходимости рядов Фурье.
§5. Оценка остатка в зависимости от дифференциальных свойств функции.
§6. Интеграл Фурье.
§7. Приложения.
ГЛАВА ДВАДЦАТАЯ. РЯДЫ ФУРЬЕ (продолжение).
§1. Операции над рядами Фурье. Полнота и замкнутость.
§2. Применение методов обобщенного суммирования к рядам Фурье.
§3. Единственность тригонометрического разложения функции.
ДОПОЛНЕНИЕ. ОБЩАЯ ТОЧКА ЗРЕНИЯ НА ПРЕДЕЛ.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Курс дифференциального и интегрального исчисления, Том 3, Фихтенгольц Г.М., 2001 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2021-10-15 23:08:04