Обучалка в Телеграм

Функциональный анализ, Треногин В.А., 2002

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.


Функциональный анализ, Треногин В.А., 2002.
 
   Содержит изложение первоначальных основ функционального анализа и тех его направлений, которые непосредственно примыкают к прикладным задачам. Изложены: метод малого параметра, метод продолжения по параметру, приближенные (в частности, разностные) методы решения уравнений, метод Галеркина и метод конечных элементов (приближение сплайнами), элементы выпуклого анализа, метод монотонных операторов и другие вопросы.
Второе издание — 1993 г.
Для студентов вузов, обучающихся по специальностям «Математика» и «Прикладная математика», для преподавателей и лиц, интересующихся приложениями функционального анализа.

Функциональный анализ, Треногин В.А., 2002


Бикомпактные множества.
В математическом анализе существенную роль играет известная теорема Больцано-Вейерштрасса, в которой утверждается: из любой ограниченной последовательности вещественных чисел можно выделить сходящуюся подпоследовательность.

Напомним, что подпоследовательностью последовательности {xn} называется ее подмножество {xnk}, если пk+1 > nk (k = 1, 2, ...т.е. если в {xnk} сохраняется порядок следования элементов {xn}.

Теорема Больцано-Вейерштрасса легко переносится на любое конечномерное банахово пространство X. Достаточно фиксировать в X базис и рассмотреть соответствующее банахово пространство координат, которое, вследствие эквивалентности норм, можно отождествить с евклидовым пространством Еn. Из теоремы Больцано-Вейерштрасса в Еn (см.[21]) теперь следует ее справедливость в X.

Оглавление.
Предисловие.
Глава I. Линейные, нормированные и банаховы пространства.
§1. Линейные пространства.
§2. Нормированные пространства.
§3. Анализ в нормированных пространствах.
§4. Пространства со скалярным произведением.
§5. Банаховы пространства.
§6. Гильбертовы пространства.
Глава II. Пространства Лебега и Соболева.
§7. Пополнение нормированных пространств и пространств со скалярным произведением. Пространства Лебега.
§8. Интеграл Лебега.
§9. Пространства Соболева.
Глава III. Линейные опрераторы.
§10. Линейные операторы. Непрерывность и ограниченность.
§11. Пространства линейных операторов.
§12. Обратные операторы.
§13. Абстрактные функции числовой переменной. Степенные ряды. Метод малого параметра.
§14. Метод продолжения по параметру.
§15. График оператора. Замкнутые операторы.
Глава IV. Пространства Лебега и Соболева.
§16. Теорема Хана-Банаха и се следствия.
§17. Сопряженные пространства.
§18. Сопряженные и самосопряженные операторы.
Глава V. Компактные множества и вполне непрерывные операторы.
§19. Компактные множества в нормированных пространствах.
§20. Линейные вполне непрерывные операторы.
§21. Нормально разрешимые операторы.
§22. Линейные уравнения с точки зрения вычислений.
Глава VI. Элементы спектральной теории линейных операторов.
§23. Собственные значения и собственные векторы линейных операторов.
§24. Резольвентное множество и спектр линейного оператора.
§25. Интегрирование абстрактных функций в банаховом пространстве
§26. Спектральные разложения самосопряженных операторов.
Глава VII. Абстрактные приближенные схемы.
§27. Аппроксимация, устойчивость и сходимость.
§28. Простейшие разностные схемы.
§29. Интерполяция сплайнами.
§30. Метод Галерки на.
§31. Дифференциальные уравнения в банаховом пространстве и методы их решения.
Глава VIII. Теоремы о неподвижных точках нелинейных операторов.
§32. Дифференцирование нелинейных операторов. Степенные ряды.
§33. Принцип сжимающих отображений.
§34. Итерационный процесс Ньютона.
§35. Принцип Шаудера.
Глава IX. Неявные операторы.
§36. Теоремы о неявных операторах.
§37. Диаграмма Ньютона и ветвление решений нелинейных уравнений.
Глава X. Нелинейные приближенные схемы и элементы анализа.
§38. Нелинейные приближенные схемы.
§39. Монотонные операторы.
§40. Элементы теории экстремумов и выпуклого анализа.
Дополнение.
Список литературы.
Предметный указатель.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Функциональный анализ, Треногин В.А., 2002 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу, если она есть в продаже, и похожие книги по лучшей цене со скидкой с доставкой по всей России.Купить книги



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-24 22:16:29