Математические модели прикладной механики, Зарубин В.С., Кувыркин Г.Н., Станкевич И.В., 2016.
Изложены основы построения и анализа математических моделей механических систем, идейное ядро которых составляют математические модели стержней, пластинок и оболочек, что позволяет строить адекватные математические модели в виде совокупности соотношений, достаточно полно и точно отражающих свойства и поведение сложных конструкционных элементов современного технологического оборудования и машиностроения. Содержание учебного пособия соответствует курсам лекций, читаемых в МГТУ им. Н.Э. Баумана.
Для студентов старших курсов, изучающих такие дисциплины, как «Механика деформируемого твердого тела», «Теория упругости и пластичности», «Динамика и прочность машин», «Сопротивление материалов», «Теория оболочек», «Строительная механика конструкций», и аспирантов математических, физических, естественнонаучных кафедр университетов и технических вузов. Может быть полезно научным сотрудникам и инженерам, занятым в области математического моделирования сложных процессов механического деформирования.
Деформированное состояние твердого тела.
Наряду с математическими моделями систем материальных точек в механике рассматривают модели сплошной среды. При изучении свойств сплошной среды точкой часто называют как точку пространства, так и частицу этой среды. В дальнейшем термин «точка» будем использовать только для обозначения места в неподвижном пространстве, а термин «частица сплошной среды» — для обозначения малого элемента сплошной среды [13].
В любой момент времени t объем V сплошной среды, ограниченный поверхностью S, занимает некоторую область пространства. Если в выбранной системе координат в этот момент времени установлено соответствие частиц некоторого объема сплошной среды и точек пространства, это означает, что определена конфигурация сплошной среды. Непрерывный переход от начальной конфигурации в момент времени t = t0 к некоторой последующей, обычно называемой актуальной конфигурацией. в общем случае связан с изменением расстояний между частицами среды. Такой переход называют процессом деформации или просто деформированием. Под деформацией обычно понимают изменение формы или размеров области, занятой сплошной средой. В дальнейшем этот термин будем связывать с количественной мерой изменения расстояний между частицами среды при деформировании.
ОГЛАВЛЕНИЕ.
Предисловие.
Основные обозначения.
1. Напряжения и деформации в твердом теле.
1.1. Силы, действующие на твердое тело.
1.2. Напряженное состояние твердого тела.
1.3. Деформированное состояние твердого тела.
1.4. Связь деформированного и напряженного состояний.
1.5. Критерии пластичности.
Вопросы и задачи.
2. Принцип возможных перемещений.
2.1. Предварительные сведения.
2.2. Обобщение принципа возможных перемещений.
2.3. Простейшие примеры применения принципа возможных перемещений.
Дополнение 2.1. Математическая модель криволинейного стержня.
Дополнение 2.2. Эластика Эйлера.
Дополнение 2.3. Математические модели нити и мембраны. Вопросы и задачи.
3. Кручение прямолинейных стержней.
3.1. Кручение осесимметричных стержней.
3.2. Депланация поперечного сечения стержня.
3.3. Гидромеханическая, мембранная и песочная аналогии.
3.4. Примеры применения аналогий.
Дополнение 3.1. Кручение стержня с прямоугольным поперечным сечением.
Вопросы и задачи.
4. Изгиб стержней и балок.
4.1. Чистый изгиб прямолинейного стержня.
4.2. Изгиб балок.
4.3. Прогиб изогнутой оси балки.
4.4. Статически неопределимые задачи изгиба балок.
Вопросы и задачи.
5. Общие теоремы прикладной механики.
5.1. Теорема Кастильяно.
5.2. Интеграл Мора.
5.3. Теорема взаимности работ.
Вопросы и задачи.
6. Модели стержневых систем.
6.1. Статически неопределимые стержневые системы.
6.2. Примеры раскрытия статической неопределимости.
Вопросы и задачи.
7. Математические модели оболочки и пластинки.
7.1. Сферическая и круговая цилиндрическая оболочки.
7.2. Деформация оболочек вращения.
7.3. Модель безмоментной оболочки вращения.
7.4. Моментная теория цилиндрической оболочки.
Дополнение 7.1. Модель оболочки произвольной формы.
Дополнение 7.2. Модель пластинки постоянной толщины.
Дополнение 7.3. Ортогональные криволинейные координаты.
Вопросы и задачи.
Литература.
Предметный указатель.
Купить .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Теги: учебник по математике :: математика :: Зарубин :: Кувыркин :: Станкевич
Смотрите также учебники, книги и учебные материалы:
- Введение в конечную математику, Кемени Д., Снелл Д., Томпсон Д., 1957
- Как разгадать код да Винчи и еще 34 удивительных способа применения математики, Элвс Р., 2016
- Как не ошибаться, Сила математического мышления, Элленберг Д., 2017
- Изменчивая природа математического доказательства, Доказать нельзя поверить, Кранц С., 2020
- Занимательная математика, Кессельман В.С., 2008
- ВНЕ ФОРМАТА, Занимательная математика, Гимнастика для ума или искусство удивлять, Карпушина Н.М., 2013
- Пифагор, Занимательная математика, Халамайзер А.Я., 1994
- Живая математика, Перельман Я.И., 1958