Обучалка в Телеграм

Аналитическая геометрия, выпуск 3, Канатников А.Н., Крищенко А.П., 2002


Аналитическая геометрия, Выпуск 3, Канатников А.Н., Крищенко А.П., 2002.

   Книга является третьим выпуском серии "Математика в техническом университете" и знакомит читателя с основными понятиями векторной алгебры и ее приложений, теории матриц и определителей, систем линейных алгебраических уравнений, кривых и поверхностей второго порядка. Материал изложен в объеме, необходимом на начальном этапе подготовки студента технического университета.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям и аспирантам.

Аналитическая геометрия, Выпуск 3, Канатников А.Н., Крищенко А.П., 2002


Линейные операции и их свойства.
Над векторами можно выполнять различные операции. Свойства этих операций определяют правила преобразования выражений, содержащих векторные величины. Эти правила и составляют предмет векторной алгебры.

Обсуждение векторных операций начнем с двух из них — сложения векторов и умножения вектора на число. Эти операции часто объединяют общим термином линейные операции.

Определение 1.5. Суммой а + b двух векторов а и b называют вектор с, построенный по следующему правилу параллелограмма. Выбрав для векторов а и b общее начало, строим на этих векторах параллелограмм. Тогда диагональ параллелограмма, выходящая из общего начала векторов, определяет их сумму (рис. 1.3).

Оглавление.
Предисловие.
Основные обозначения.
1. Линейные операции над векторами.
1.1. Векторные и скалярные величины.
1.2. Типы векторов и их взаимное расположение.
1.3. Линейные операций и их свойства.
1.4. Ортогональная проекция.
1.5. Линейная зависимость и независимость векторов.
1.6. Базис.
1.7. Вычисления в координатах.
Вопросы и задачи.
2. Произведения векторов
2.1. Определители второго и третьего порядков.
2.2. Скалярное произведение.
2.3. Векторное произведение.
2.4. Смешанное произведение.
2.5. Приложения произведений векторов.
Д.2.1. Двойное векторное произведение.
Вопросы и задачи.
3. Системы координат
3.1. Декартова система координат.
3.2. Преобразование Прямоугольных координат.
3.3. Простейшие задачи аналитической геометрии.
3.4. Вычисление площадей и объемов.
3.5. Кривые и поверхности.
3.6. Полярная система координат.
3.7. Цилиндрическая и сферическая системы координат.
Вопросы и задачи.
4. Прямая на плоскости.
4.1. Алгебраические кривые первого порядка.
4.2. Специальные виды уравнения прямой.
4.3. Взаимное расположение двух прямых.
4.4. Расстояние от точки до прямой.
Вопросы и задачи.
5. Прямая и плоскость в пространство.
5.1. Алгебраические поверхности первого порядка.
5.2. Специальные виды уравнения плоскости.
5.3. Уравнения прямой в пространстве.
5.4. Взаимное расположение прямых и плоскостей.
5.5. Расстояние до плоскости и до прямой.
Д.5.1. Пучки и связки.
Вопросы и задачи.
6. Матрицы и операции над ними.
6.1. Виды матриц.
6.2. Линейные операции над матрицами.
6.3. Транспонирование матриц.
6.4. Умножение матриц.
6.5. Блочные матрицы.
6.6. Прямая сумма матриц.
6.7. Линейная зависимость строк и столбцов.
6.8. Элементарные преобразования матриц.
Вопросы и задачи.
7. Определители
7.1. Определители n-го порядка.
7.2. Свойства определителей.
7.3. Методы вычисления определителей.
Вопросы и задачи.
8. Обратная матрица и ранг матрицы
8.1. Обратная матрица и ее свойства.
8.2. Вычисление обратной матрицы.
8.3. Решение матричных уравнений.
8.4. Ранг матрицы.
8.5. Теорема о базисном миноре.
8.6. Вычисление ранга матрицы.
Вопросы и задачи.
9. Системы линейных алгебраических уравнений.
9.1. Основные определения.
9.2. Формы записи СЛАУ.
9.3. Критерий совместности СЛАУ.
9.4. Формулы Крамера.
9.5. Однородные системы.
9.6. Неоднородные системы.
9.7. Как решать СЛАУ?.
Д.9.1. СЛАУ с комплексными коэффициентами.
Вопросы и задачи.
10. Численные методы решения СЛАУ.
10.1. Проблемы, связанные с вычислениями.
10.2. Прямые и итерационные методы решения СЛАУ.
10.3. Метод Гаусса.
10.4. Особенности метода Гаусса.
10.5. Метод прогонки.
Д.10.1. Мультипликативные разложения матриц.
Вопросы и задачи.
11. Кривые второго порядка.
11.1. Эллипс.
11.2. Гипербола.
11.3. Парабола.
11.4. Неполные уравнения кривой второго порядка.
Д.11.1. Полярные уравнения.
Вопросы и задачи.
12. Поверхности второго порядка.
12.1. Поверхность вращения и преобразование сжатия.
12.2. Эллипсоиды.
12.3. Гиперболоиды.
12.4. Эллиптические параболоиды.
12.5. Конусы.
12.6. Цилиндрические поверхности.
12.7. Метод сечений.
12.8. Неполные уравнения поверхности второго порядка.
Д.12.1. Конические и линейчатые поверхности.
Д.12.2. Конические сечения.
Вопросы и задачи.
Список рекомендуемой литературы.
Предметный указатель.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Аналитическая геометрия, выпуск 3, Канатников А.Н., Крищенко А.П., 2002 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-12-21 23:10:36