Алгебра комплексных чисел в геометрических задачах, Понарин Я.П., 2014.
В книге в научно-популярной форме излагаются основы метода комплексных чисел в геометрии. Отдельные главы посвящены многоугольникам, прямой и окружности, линейным и круговым преобразованиям. Метод комплексных чисел иллюстрируется на решениях более 60 задач элементарного характера. Для самостоятельного решения предлагается более 200 задач, снабжённых ответами или указаниями.
Книга адресуется всем любителям геометрии, желающим самостоятельно овладеть методом комплексных чисел. Её можно использовать для проведения кружков и факультативных занятий в старших классах средней школы.
Примеры.
Касательная в точке C к окружности пересекает в точке M прямую, содержащую диаметр AB этой окружности. Перпендикуляр к AB в точке M пересекает прямые AC и BC в точках D и E. Докажите, что точка M — середина отрезка DE.
На сторонах CA и CB треугольника ABC вне его построены квадраты CAMN и CBPQ с центрами O1 и O2. Точки D и F — середины отрезков MP и NQ. Докажите, что треугольники ABD и O1O2F прямоугольные и равнобедренные.
Через ортоцентр треугольника проведена произвольная прямая. Докажите, что прямые, симметричные ей относительно сторон треугольника пересекаются в одной точке, лежащей на описанной около треугольника окружности.
ОГЛАВЛЕНИЕ.
Предисловие.
Глава 1. Основы метода комплексных чисел.
1. Геометрическая интерпретация комплексных чисел и действий над ними.
1.1. Плоскость комплексных чисел (8). 1.2. Операция перехода к сопряжённому числу (9). 1.3. Векторная интерпретация комплексных чисел, их сложения и вычитания (9). 1.4. Геометрический смысл умножения комплексных чисел (10). 1.5. Деление отрезка в данном отношении (11). Задачи (11).
2. Формулы длины отрезка и скалярного произведения векторов.
2.1. Расстояние между двумя точками (12). 2.2. Скалярное произведение векторов (12). 2.3. Примеры решения задач (13). Задачи (14).
3. Параллельность, коллинеарность, перпендикулярность.
3.1. Коллинеарность векторов (15). 3.2. Коллинеарность трёх точек (16).
3.3. Перпендикулярность отрезков (векторов) (17). Задачи (18).
4. Комплексные координаты некоторых точек.
4.1. Точка пересечения секущих к окружности (19). 4.2. Точка пересечения касательных к окружности (19). 4.3. Ортогональная проекция точки на прямую (20). 4.4. Центроид и ортоцентр треугольника (20). Зада- чи (21).
5. Решение задач методом комплексных чисел.
Задачи (26).
6. Классические теоремы элементарной геометрии.
6.1. Теорема Ньютона (26). 6.2. Теорема Гаусса (27). 6.3. Теорема Симcона (28). 6.4. Теорема Паскаля (28). 6.5. Теорема Монжа (29). 6.6. Теорема Дезарга (30). Задачи (31).
7. Углы и площади.
7.1. Угол между векторами (32). 7.2. Площадь треугольника и четырёхугольника (33). 7.3. Соотношение Бретшнайдера (33). 7.4. Теорема Птолемея (34). 7.5. Решение задач (34). Задачи (36).
Задачи к главе 1.
Глава 2. Многоугольники.
8. Подобные и равные треугольники.
8.1. Подобные треугольники (40). 8.2. Равные треугольники (41). Зада чи (43).
9. Правильный треугольник.
9.1. Критерий правильного треугольника (44). 9.2. Теорема Помпею (45). Задачи (49).
10. Правильные многоугольники.
10.1. Координаты вершин правильного n-угольника (50). 10.2. Вычисление длин сторон и диагоналей правильного n-угольника (51). Задачи (56).
Задачи к главе 2.
Глава 3. Прямая и окружность.
11. Геометрический смысл уравнения az+bz+c=0.
11.1. Сопряжённые комплексные координаты. Уравнение прямой (59).
11.2. Приведённое уравнение прямой (61).
12. Две прямые. Расстояние от точки до прямой.
12.1. Угол между прямыми (62). 12.2. Критерии перпендикулярности и параллельности двух прямых (62). 12.3. Расстояние от точки до прямой (63). Задачи (66).
13. Двойное отношение четырёх точек плоскости.
13.1. Определение и свойства двойного отношения (68). 13.2. Геометрический смысл аргумента и модуля двойного отношения четырёх точек (68).
13.3. Критерий принадлежности четырёх точек окружности или пря мой (69). Задачи (72).
14. Геометрический смысл уравнения zz+az+bz+c=0.
14.1. Общее уравнение окружности в сопряжённых комплексных координатах (72). 14.2. Уравнение окружности по трём её точкам (74).
14.3. Ортогональные окружности (74). Задачи (77).
15. Гармонический четырёхугольник.
15.1. Гармоническая четвёрка точек (78). 15.2. Гармонический четырёх- угольник (79). Задачи (81).
16. Поляры и полюсы относительно окружности.
16.1. Полярно сопряжённые точки (81). 16.2. Поляра точки относительно окружности (82). 16.3. Построение поляры. Полюс прямой (82). 16.4. Другое определение полярной сопряжённости точек (83). 16.5. Построение поляры данной точки одной линейкой (85). Задачи (86).
17. Пучки окружностей.
17.1. Степень точки относительно окружности (86). 17.2. Радикальная ось двух окружностей (87). 17.3. Радикальный центр трёх окружностей (88).
17.4. Пучки окружностей (89). 17.5. Ортогональные пучки окружностей (90). Задачи (93).
Глава 4. Преобразования плоскости.
18. Подобия и движения.
18.1. Первоначальные сведения о преобразованиях подобия (94). 18.2. Формулы подобий (94). 18.3. Угол подобия (96). 18.4. Частные случаи подобий первого рода (96). 18.5. Частные случаи подобий второго рода (98). Задачи (101).
19. Представление подобий композициями гомотетий и движений. Оси подобий второго рода.
19.1. Теоремы о классификации подобий (101). 19.2. Оси подобия второго рода (103).
20. Композиции подобий.
20.1. Композиции подобий первого рода (105). 20.2. Композиции подобий первого и второго рода (107). Задачи (110).
21. Аффинные преобразования евклидовой плоскости.
21.1. Формула и свойства аффинных преобразований (111). 21.2. Задание аффинного преобразования (113). 21.3. Неподвижные точки (114).
22. Инвариантные пучки параллельных прямых и двойные прямые аффинного преобразования.
22.1. Характеристическое уравнение и собственные числа аффинного преобразования (115). 22.2. Характеристическая окружность аффинного преобразования (117). 22.3. Инвариантные пучки прямых и двойные прямые (117).
23. Частные случаи аффинных преобразований.
23.1. Сжатия и сдвиги (119). 23.2. Косая симметрия (121). 23.3. Эллиптический поворот (122). 23.4. Параболический поворот (124). Задачи (125).
24. Инверсия.
24.1. Определение и формула инверсии (126). 24.2. Образы прямых и окружностей при инверсии (128). 24.3. Свойство конформности инверсии (129). Задачи (132).
25. Круговые преобразования первого рода.
25.1. Конформная плоскость (132). 25.2. Круговые преобразования первого рода (133). 25.3. Неподвижные точки (135).
26. Круговые преобразования второго рода.
26.1. Формула и свойства круговых преобразований второго рода (139).
26.2. Неподвижные точки (141). 26.3. Задание кругового преобразования (143). Задачи (145).
Задачи смешанного содержания.
Ответы, указания, решения.
Предметный указатель.
Литература
Купить .
Купить - rtf .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Теги: учебник по математике :: математика :: Понарин
Смотрите также учебники, книги и учебные материалы:
- Основы вычислительной математик, Демидович Б.П., Марон И.А., 1966
- Математическое понимание природы, Очерки удивительных физических явлений и их понимания математиками, Арнольд В.И., 2009
- Аналитическая геометрия и линейная алгебра, Кадомцев С.Б., 2011
- Алгебра, Рациональные и иррациональные алгебраические задачи, элективный курс, Земляков А.Н., 2012
- Математика, математический анализ, часть 2, Аксенов А.П., 2004
- Основы математического анализа, Акилов Г.П., Дятлов В.Н., 1980
- Математическое моделирование, Дискретные подходы и численные методы, Зубко И.Ю., Няшина Н.Д., 2012
- Математическая типография, курс лекций, Знаменская О.В., Знаменский С.В., Лейнартас Д.Е., Трутнев В.М., 2008