Обучалка в Телеграм

Методы вычислений, Хакимзянов Г.С., Черный С.Г., часть 1, 2003


Методы вычислений, Хакимзянов Г.С., Черный С.Г., Часть 1, 2003.

Учебное пособие соответствует программе курса лекций «Методы вычислений», который читается на механико-математическом факультете НГУ. В его первой части излагаются основы численных методов решения задачи Коши для обыкновенных дифференциальных уравнений, формулируются задачи для семинарских занятий, приводятся примеры контрольных работ и заданий для практических занятий на ЭВМ. Пособие предназначено для студентов и преподавателей математических специальностей высших учебных заведений.

 Методы вычислений, Хакимзянов Г.С., Черный С.Г., Часть 1, 2003

Методы Рунге - Кутты.
Повышение точности модифицированных методов Эйлера было достигнуто за счет дополнительных по сравнению с обычным методом Эйлера вычислений функции ƒ(x, у) из правой части дифференциального уравнения. При этом вычислять частные производные от функции ƒ не требовалось. На этой идее дополнительных вычислений правой части основаны методы Рунге—Кутты высокой точности. В этих методах правая часть дифференциального уравнения вычисляется в нескольких точках, составляется линейная комбинация вычисленных значений, которая и используется при определении значения уj+1. Например, к классу методов Рунге—Кутты относится метод

уj + 1 = уj + A1φ1 + A2φ2,
φ1 = hƒ(xj, yj),
φ2 = hƒ(xj + В1h,yj, + В2φ1),
в котором правую часть надо вычислять дважды. Поскольку здесь значение уj уже известно, то можно определить значение φ1, а затем по явной формуле вычислить и φ2. Выбор постоянных А1, А2, В1, B2 производится так, чтобы получить наибольшую возможную точность при произвольной гладкой функции ƒ(х,у) и произвольном шаге h > 0. Подчеркнем еще раз, что при использовании методов Рунге—Кутты, в отличие от метода степенных рядов, не требуется вычислять производные от функции ƒ.

Оглавление
Предисловие
§ 1. Метод Эйлера
§ 2. Методы Рунге—Кутты
§ 3. Многошаговые методы
§ 4. Конечно-разностные методы
§ 5. Аппроксимация дифференциальной задачи разностной схемой
§ 6. Сходимость разностной схемы
§ 7. Устойчивость разностной схемы
§ 8. Спектральные признаки устойчивости
§ 9. Исследование устойчивости нелинейных задач
§ 10. Численное решение жестких систем дифференциальных уравнений
§ 11. Контрольная работа по теме «Локальная погрешность и аппроксимация»
§ 12. Контрольная работа по теме «Устойчивость конечно-разностных схем»
§ 13. Задания для практических занятий
Ответы, указания, решения
Библиографический список.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Методы вычислений, Хакимзянов Г.С., Черный С.Г., часть 1, 2003 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - djvu - Яндекс.Диск.
Дата публикации:





Теги: :: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-12-21 23:06:29