Обучалка в Телеграм

Теория чисел, Нестеренко


Название: Теория чисел. 2008.

Автор: Нестеренко Ю.В.

     Основу учебника составляют результаты элементарной теории чисел, сформировавшейся в трудах классиков — Ферма, Эйлера, Гаусса и др. Обзорно освещены свойства простых чисел, теория диофантовых уравнений, алгоритмические аспекты теории чисел с применениями в криптографии (проверка больших простых чисел на простоту, разложение больших чисел на множители, дискретное логарифмирование) и с использованием ЭВМ.
Для студентов высших учебных заведений.

Теория чисел - Нестеренко Ю.В.

     Предмет изучения теории чисел — числа и их свойства, т. е. числа выступают здесь не как средство или инструмент, а как объект исследования. Натуральный ряд
1,2,3,4, ...,9,10,11, ...,99,100,101, ...
— множество натуральных чисел — является важнейшей областью исследований, необычайно содержательной, важной и интересной.
Изучение натуральных чисел было начато в Древней Греции. Евклид и Эратосфен открыли свойства делимости чисел, доказали бесконечность множества простых чисел и нашли способы их построения. Задачи, связанные с решением неопределенных уравнений в целых числах, были предметом исследований Диофанта, а также ученых Древней Индии и Древнего Китая, стран Средней Азии.

Содержание
Введение
Глава 1. О делимости чисел
1.1. Свойства делимости целых чисел
1.2. Наименьшее общее кратное и наибольший общий делитель
1.3. Алгоритм Евклида
1.4. Решение в целых числах линейных уравнений
Задачи для самостоятельного решения
Глава 2. Простые и составные числа
2.1. Простые числа. Решето Эратосфена. Бесконечность множества простых чисел
2.2. Основная теорема арифметики
2.3. Теоремы Чебышева
2.4. Дзета-функция Римана и свойства простых чисел
Задачи для самостоятельного решения
Глава 3. Арифметические функции
3.1. Мультипликативные функции и их свойства
3.2. Функция Мёбиуса и формулы обращения
3.3. Функция Эйлера
3.4. Сумма делителей и число делителей натурального числа
3.5. Оценки среднего значения арифметических функций
Задачи для самостоятельного решения
Глава 4. Числовые сравнения
4.1. Сравнения и их основные свойства
4.2. Классы вычетов. Кольцо классов вычетов по данному модулю
4.3. Полная и приведенная системы вычетов
4.4. Теорема Вильсона
4.5. Теоремы Эйлера и Ферма
4.6. Представление рациональных чисел бесконечными десятичными дробями
4.7. Проверка на простоту и построение больших простых чисел
4.8. Разложение целых чисел на множители и криптографические применения
Задачи для самостоятельного решения
Глава 5. Сравнения с одним неизвестным
5.1. Основные определения
5.2. Сравнения первой степени
5.3. Китайская теорема об остатках
5.4. Полиномиальные сравнения по простому модулю
5.5. Полиномиальные сравнения по составному модулю -Задачи для самостоятельного решения
Глава 6. Сравнения второй степени
6.1. Сравнения второй степени по простому модулю
6.2. Символ Лежандра и его свойства
6.3. Квадратичный закон взаимности
6.4. Символ Якоби и его свойства
6.5. Суммы двух и четырех квадратов
6.6. Представление нуля квадратичными формами от трех переменных
Задачи для самостоятельного решения
Глава 7. Первообразные корни и индексы
7.1. Показатель числа по заданному модулю
7.2. Существование первообразных корней по простому модулю
7.3. Построение первообразных корней по модулям pk и 2рk
7.4. Теорема об отсутствии первообразных корней по модулям, отличным от 2, 4, pk и 2pk
7.5. Индексы и их свойства
7.6. Дискретное логарифмирование
7.7. Двучленные сравнения
Задачи для самостоятельного решения
Глава 8. Цепные дроби
8.1. Теорема Дирихле о приближении действительных чисел рациональными
8.2. Конечные цепные дроби
8.3. Цепная дробь действительного числа
8.4. Наилучшие приближения
8.5. Эквивалентные числа
8.6. Квадратичные иррациональности и цепные дроби
8.7. Использование цепных дробей для решения некоторых диофантовых уравнений
8.8. Разложение числа е в цепную дробь
Задачи для самостоятельного решения
Глава 9. Алгебраические и трансцендентные числа
9.1. Поле алгебраических чисел
9.2. Приближения алгебраических чисел рациональными. Существование трансцендентных чисел
9.3. Иррациональность чисел е и и
9.4. Трансцендентность числа е
9.5. Трансцендентность числа л
9.6. Невозможность квадратуры круга
Задачи для самостоятельного решения
Ответы и указания
Список литературы



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Теория чисел, Нестеренко - fileskachat.com, быстрое и бесплатное скачивание.

Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать книгу Теория чисел - Нестеренко Ю.В. - depositfiles

Скачать книгу Теория чисел - Нестеренко Ю.В. - letitbit
Дата публикации:





Теги: :: :: ::


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-21 17:55:40