Python, Искусственный интеллект, большие данные и облачные вычисления, Дейтел П., Дейтел Х., 2020.
Пол и Харви Дейтелы предлагают по-новому взглянуть на Python и использовать уникальный подход, чтобы быстро решить проблемы, стоящие перед современными айтишниками. Вы на практике познакомитесь с революционными вычислительными технологиями и программированием на Python — одном из самых популярных языков.
В вашем распоряжении более пятисот реальных задач — от фрагментов до 40 больших сценариев и примеров с полноценной реализацией. IPython с Jupyter Noteboos позволят быстро освоить современные идиомы программирования Python. Главы 1-5 и фрагменты глав 6-7 сделают понятными примеры решения задач искусственного интеллекта из глав 11-16. Вы познакомитесь с обработкой естественного языка, анализом эмоций в Twitter®, когнитивными вычислениями IBM® Watson™, машинным обучением с учителем в задачах классификации и регрессии, машинным обучением без учителя в задачах кластеризации, распознавания образов с глубоким обучением и сверточными нейронными сетями, рекуррентными нейронными сетями, большими данными с Hadoop®, Spark™ и NoSQL, IoT и многим другим. Вы поработаете (напрямую или косвенно) с облачными сервисами, включая Twitter, Google Translate™, IBM Watson, Microsoft® Azure®, OpenMapQuest, PubNub и др.
Написание и выполнение кода в Jupyter Notebook.
Дистрибутив Anaconda, установленный вами в разделе «Приступая к работе», включает Jupyter Notebook — интерактивную браузерную среду, в которой можно писать и выполнять код, а также комбинировать его с текстом, изображениями и видео. Документы Jupyter Notebook широко применяются в сообществе data science в частности и в более широком научном сообществе в целом. Они рассматриваются как предпочтительный механизм проведения аналитических исследований данных и распространения воспроизводимых результатов. Среда Jupyter Notebook поддерживает все больше языков программирования.
Для вашего удобства весь исходный код книги также предоставляется в формате документов Jupyter Notebook, которые вы можете просто загружать и выполнять. В этом разделе используется интерфейс JupyterLab, который позволяет управлять файлами документов Notebook и другими файлами, используемыми в них (например, графическими изображениями и видеороликами). Как вы убедитесь, JupyterLab также позволяет легко писать код, выполнять его, просматривать результаты, вносить изменения и снова выполнять его.
ОГЛАВЛЕНИЕ.
Предисловие.
Приступая к работе.
Глава 1. Компьютеры и Python.
Глава 2. Введение в программирование Python.
Глава 3. Управляющие команды.
Глава 4. Функции.
Глава 5. Последовательности: списки и кортежи.
Глава 6. Словари и множества.
Глава 7. NumPy и программирование, ориентированное на массивы.
Глава 8. Подробнее о строках.
Глава 9. Файлы и исключения.
Глава 10. Объектно-ориентированное программирование.
Глава 11. Обработка естественного языка (NLP).
Глава 12. Глубокий анализ данных Twitter.
Глава 13. IBM Watson и когнитивные вычисления.
Глава 14. Машинное обучение: классификация, регрессия и кластеризация.
Глава 15. Глубокое обучение.
Глава 16. Большие данные: Hadoop, Spark, NoSQL и IoT.
Купить .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Теги: учебник по программированию :: программирование :: Дейтел :: Дейтел
Смотрите также учебники, книги и учебные материалы:
- Ловушка для багов, Полевое руководство по веб-хакингу, Яворски П., 2020
- Конкурентность в С#, Асинхронное, параллельное и многопоточное программирование, Клири С., 2020
- Классические задачи Computer Science на языке Python, Копец Д., 2020
- Карьера программиста, Лакман М.Г., 2020
- Гид по Computer Science для каждого программиста, Спрингер В., 2020
- Java Concurrency на практике, Гетц Брайан, Пайерлс Тим, Блох Джошуа, Боубер Джозеф, Холмс Дэвид, Ли Даг, 2020
- Swift, Основы разработки приложений под iOS, iPadOS и macOS, Усов В., 2021
- Swift, Основы разработки приложений под iOS, iPadOS и macOS, Усов В., 2020