Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004.
Методы, используемые современной топологией, весьма разнообразны. В этой книге подробно рассматриваются методы комбинаторной топологии, которые заключаются в исследовании топологических пространств посредством их разбиений на какие-то элементарные множества, и методы дифференциальной топологии, которые заключаются в рассмотрении гладких многообразий и гладких отображений. Нередко одну и ту же топологическую задачу можно решить как комбинаторными методами, так и дифференциальными. В таких случаях обсуждаются оба подхода.
Одна из главных целей книги состоит в том, чтобы продвинуться в изучении свойств топологических пространств (и особенно многообразий) столь далеко, сколь это возможно без привлечения сложной техники. Этим она отличается от большинства книг по топологии.
Книга содержит много задач и упражнений. Почти все задачи снабжены подробными решениями.
Топологические и геометрические свойства графов.
Возьмём в пространстве R3 несколько точек A1,..., Ап и соединим некоторые из них попарно непересекающимися кривыми. Полученное множество с индуцированной из R3 топологией называют графом, или l-мерным комплексом. Точки А1, ..., Ап называют при этом вершинами, или 0-мерными клетками, а соединяющие их кривые называют рёбрами, или l-мерными клетками. Количество рёбер, выходящих из вершины графа, называют степенью вершины. В том случае, когда из любой вершины графа можно пройти по его рёбрам в любую другую вершину, граф называют связным.
Граф может иметь петли (рёбра, начало и конец которых совпадают) и двойные рёбра (несовпадающие рёбра, имеющие одну и ту же пару вершин).
Последовательность попарно различных вершин v1, ..., vn, соединённых рёбрами v1v2, v2v3, ..., vnv1, называют циклом.
Оглавление
Некоторые обозначения
Предисловие
Основные определения
Глава 1. Графы
§1. Топологические и геометрические свойства графов
1.1. Планарные графы
1.2. Формула Эйлера для планарных графов
1.3. Вложения графов в трёхмерное пространство
1.4. ^-связные графы
1.5. Теорема Штейница
§2. Гомотопические свойства графов
2.1. Фундаментальная группа графа
2.2. Накрытия l-мерных комплексов
2.3. Накрытия и фундаментальная группа
§3. Инварианты графов
3.1. Хроматический многочлен
3.2. Многочлен от трёх переменных
3.3. Многочлен Ботта—Уитни
3.4. Инварианты Татта
Глава II. Топология в евклидовом пространстве
§4. Топология подмножеств евклидова пространства
4.1. Расстояние от точки до множества
4.2. Продолжение непрерывных отображений
4.3. Теоремы Лебега о покрытиях
4.4. Канторово множество
§5. Кривые на плоскости
5.1. Теорема Жордана
5.2. Теорема Уитни—Грауштейна
5.3. Двойные точки, двойные касательные и точки перегиба
§6. Теорема Брауэра и лемма Шпернера
6.1. Теорема Брауэра
6.2. Теорема Жордана как следствие теоремы Брауэра
6.3. Лемма Шпернера
6.4. Теорема Какутани
Глава III. Топологические пространства
§7. Элементы общей топологии
7.1. Хаусдорфовы пространства и компактные пространства
7.2. Нормальные пространства
7.3. Разбиения единицы
7.4. Паракомпактные пространства
§8. Симплициальные комплексы
8.1. Евклидовы клеточные комплексы
8.2. Симплициальные отображения
8.3. Абстрактные симплициальные комплексы
8.4. Симплициальные аппроксимации
8.5. Нерв покрытия
8.6. Псевдомногообразия
8.7. Степень отображения в евклидово пространство
8.8. Теорема Борсука—Улама
8.9. Следствия и обобщения теоремы Борсука—Улама
§9. СW-комплексы
9.1. Приклеивание по отображению
9.2. Определение СW-комплексов
9.3. Топологические свойства
9.4. Клеточная аппроксимация
9.5. Геометрическая реализация CW-комплексов
§10. Конструкции
10.1. Прямое произведение
10.2. Цилиндр, конус и надстройка
10.3. Джойн
10.4. Симметрическая степень
Глава IV. Двумерные поверхности. Накрытия. Расслоения. Гомотопические группы
§11. Двумерные поверхности
11.1. Основные определения
11.2. Приведение двумерных поверхностей к простейшему виду
11.3. Завершение классификации двумерных поверхностей
11.4. Риманово определение рода поверхности
§12. Накрытия
12.1. Универсальные накрытия двумерных поверхностей
12.2. Существование накрывающего пространства с заданной фундаментальной группой
12.3. Единственность накрывающего пространства с заданной фундаментальной группой
12.4. Локальные гомеоморфизмы
§13. Графы на поверхностях. Взрезанный квадрат графа
13.1. Род графа
13.2. Раскраски карт
13.3. Взрезанный квадрат графа
§14. Расслоения и гомотопические группы
14.1. Накрывающая гомотопия
14.2. Гомотопические группы
14.3. Точная последовательность расслоения
14.4. Относительные гомотопические группы
14.5. Теорема Уайтхеда
Глава V. Многообразия
§15. Определение и основные свойства
15.1. Многообразия с краем
15.2. Отображения многообразий
15.3. Гладкие разбиения единицы
15.4. Теорема Сарда
15.5. Важный пример: многообразия Грассмана
§16. Касательное пространство
16.1. Дифференциал отображения
16.2. Векторные поля
16.3. Риманова метрика
16.4. Дифференциальные формы и ориентируемость
§17. Вложения и погружения
17.1. Вложения компактных многообразий
17.2. Триангуляция замкнутого многообразия
17.3. Погружения
17.4. Вложения некомпактных многообразий
17.5. Невозможность некоторых вложений
§18. Степень отображения
18.1. Степень гладкого отображения
18.2. Индекс особой точки векторного поля
18.3. Теорема Хопфа
18.4. Аппроксимации непрерывных отображений
18.5. Конструкция Понтрягина
18.6. Гомотопически эквивалентные линзовые пространства
§19. Теория Морса
19.1. Функции Морса
19.2. Градиентные векторные поля и приклеивание ручек
19.3. Примеры функций Морса
Глава VI. Фундаментальная группа
§20. CW-комплексы
20.1. Основная теорема
20.2. Некоторые примеры
20.3. Фундаментальная группа пространства SO(n)
§21. Теорема Зейферта—ван Кампена
21.1. Эквивалентные формулировки
21.2. Доказательство
21.3. Группа узла
21.4. Рогатая сфера Александера
§22. Фундаментальная группа дополнения алгебраической кривой
22.1. Дополнение к набору комплексных прямых
22.2. Теорема ван Кампена
22.3. Применения теоремы ван Кампена
Решения и указания
Литература
Предметный указатель.
Купить книгу Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004 .
Купить книгу Элементы комбинаторной и дифференциальной топологии, Прасолов В.В., 2004 .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Теги: учебник по математике :: математика :: Прасолов :: теорема Жордана
Смотрите также учебники, книги и учебные материалы:
- Учимся решать задачи, 4 класс, Белошистая А., 2011
- Математика, Комплексный тренажер, 3 класс, Барковская Н.Ф., 2011
- Алгебра векторов и матриц, Рудык Б.М., 2008
- Элементы теории гомологий, Прасолов В.В., 2005
- Дифференциальная геометрия и топология, Троицкий Е.В., 2002
- Лекции по дифференциальной геометрии, Тайманов И.А., 2002
- Математика, Раздел статистика, Кремлев А.Г., 2001
- Квадратичные формы данные, нам в ощущениях, Конвей Д., 2008