Курс алгебры, Винберг Э.Б., 2001.
Книга представляет собой расширенный вариант курса алгебры, читаемого в течение трех семестров на математических факультетах университетов. В нее включены такие дополнительные разделы, как элементы коммутативной алгебры (в связи с аффинной алгебраической геометрией), теории Галуа, теории конечномерных ассоциативных алгебр, и теории групп Ли.
Это позволяет использовать книгу не только как учебник по общему курсу алгебры, но и как пособие для тех, кто желает углубить свои познания в алгебре. Изложение иллюстрируется большим количеством примеров и сопровождается задачами, часто содержащими дополнительный материал.
Для математиков и физиков студентов, аспирантов, преподавателей и научных работников.
Предисловие
Предисловие ко второму изданию
Глава 1. Алгебраические структуры
§ 1. Введение
§ 2. Абелевы группы
§ 3. Кольца и поля
§ 4. Подгруппы, подкольца и подполя
§ 5. Поле комплексных чисел
§ 6. Кольца вычетов
§ 7. Векторные пространства
§ 8. Алгебры
§ 9. Алгебра матриц
Глава 2. Начала линейной алгебры
§ 1. Системы линейных уравнений
§ 2. Базис и размерность векторного пространства
§ 3. Линейные отображения
§ 4. Определители
§ 5. Некоторые приложения определителей
Глава 3. Начала алгебры многочленов
§ 1. Построение и основные свойства алгебры многочленов
§ 2. Общие свойства корней многочленов
§ 3. Основная теорема алгебры комплексных чисел
§ 4. Корни многочленов с вещественными коэффициентами
§ 5. Теория делимости в евклидовых кольцах
§ 6. Многочлены с рациональными коэффициентами
§ 7. Многочлены от нескольких переменных
§ 8. Симметрические многочлены
§ 9. Кубические уравнения
§ 10. Поле рациональных дробей
Глава 4. Начала теории групп
§ 1. Определение и примеры
§ 2. Группы в геометрии и физике
§ 3. Циклические группы
§ 4. Системы порождающих
§ 5. Разбиение на смежные классы
§ 6. Гомоморфизмы
Глава 5. Векторные пространства
§ 1. Взаимное расположение подпространств
§ 2. Линейные функции
§ 3. Билинейные и квадратичные функции
§ 4. Евклидовы пространства
§ 5. Эрмитовы пространства
Глава 6. Линейные операторы
§ 1. Матрица линейного оператора
§ 2. Собственные векторы
§ 3. Линейные операторы и билинейные функции в евклидовом
пространстве
§ 4. Жорданова форма
§ 5. Функции от линейного оператора
Глава 7. Аффинные и проективные пространства
§ 1. Аффинные пространства
§ 2. Выпуклые множества
§ 3. Аффинные преобразования и движения
§ 4. Квадрики
§ 5. Проективные пространства
Глава 8. Тензорная алгебра
§ 1. Тензорное произведение векторных пространств
§ 2. Тензорная алгебра векторного пространства
§ 3. Симметрическая алгебра
§ 4. Алгебра Грассмана Глава
9. Коммутативные кольца
§ 1. Абелевы группы
§ 2. Идеалы и факгоркольца
§ 3. Модули над кольцами главных идеалов
§ 2. Нётеровы кольца
§ 3. Алгебраические расширения
§ 4. Конечно порожденные алгебры и аффинные алгебраические
многообразия
§ 5. Разложение на простые множители
Глава 10. Группы
§ 1. Прямые и полупрямые произведения
§ 2. Коммутант
Примеры.
Множество векторов пространства с операциями сложения и векторного умножения является примером алгебраической структуры с двумя операциями. Кстати, отметим, что скалярное умножение векторов не является операцией в определенном выше смысле, так как его результат не есть элемент того же множества. Подобные более общие операции также рассматриваются в алгебре, но мы пока не будем об этом думать.
Все приведенные выше примеры являются естественными в том смысле, что они были открыты в результате изучения реального мира и внутреннего развития математики. В принципе можно рассматривать любые операции в любых множествах.
Например, можно рассматривать операцию в множестве Z+I ставящую в соответствие любым двум числам число совпадающих цифр в их десятичной записи. Однако лишь немногие алгебраические структуры представляют реальный интерес. Следует уточнить, что алгебраиста интересуют только те свойства алгебраических структур и составляющих их элементов, которые могут быть выражены в терминах заданных операций. Этот подход находит свое выражение в понятии изоморфизма.
Купить книгу Курс алгебры, Винберг Э.Б., 2001 .
Купить книгу Курс алгебры, Винберг Э.Б., 2001 .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Теги: математика :: алгебра :: Винберг
Смотрите также учебники, книги и учебные материалы:
- Лучшие математические игры и головоломки, или самый настоящий математический цирк, Гарднер М., 2009
- Линейная алгебра, Теоремы и алгоритмы, Яцкин Н.И., 2008
- Курс дифференциальных уравнений, Степанов В.В., 2004
- Курс высшей математики, Баврин И.И., 2004
- Динамика геометрических фигур, Силаев Л.Е., 2007
- Высшая математика, Баврин И.И., Матросов В.Л., 2004
- Тренажер по математике для 1 класса, Обучение решению задач, Белошистая А.В., 2007
- Математический анализ, Неопределенный интеграл, Хорошилова, 2007