Название: Математика, ее содержание, методы и значение - Том 1. 1956.
Автор: Александров А.Д., Колмогоров А.Н., Лаврентьев М.А.
Из предисловия:
Возникшая еще в древности из практических потребностей, математика выросла в громадную систему разветвленных дисциплин. Как и другие науки, она отражает законы материальной действительности и служит могучим орудием познания и покорения природы. Но свойственный математике высокий уровень абстракции делает новые ее разделы сравнительно мало доступными для неспециалиста. Тот же отвлеченный характер математики порождал еще в древности идеалистические представления о ее независимости от материальной действительности.
Коллектив авторов при составления этой книги исходил из намерения ознакомить достаточно широкие круги советской интеллигенции с содержанием и методами отдельных математических дисциплин, их материальными основами и путями развития.
В качестве минимума предварительных математических знаний читателя предполагается знание только курса средней школы, однако в отношении доступности материала каждый из трех томов не является однородным. Желающие впервые познакомиться с началами высшей математики, с пользой прочтут несколько первых глав, но для полного понимания следующих глав необходимо изучение соответствующих учебников. В полном объеме книга окажется доступной в основном лишь читателям, уже имеющим некоторые навыки в применении методов математического анализа (дифференциального и интегрального исчисления). Для таких читателей - представителей естественнонаучных и инженерных специальностей, учителей математики - особенно существенными окажутся главы, вводящие их в более новые разделы математики.
Естественно, что в рамках одной книги нельзя исчерпать всего богатства даже основных направлений математических исследований; некоторая свобода .в выборе материала при этом необходима. Но в самых общих чертах эта книга должна дать представление о современном состоянии математики, ее происхождении и перспективах развития в целом. Поэтому книга в известной мере рассчитана и на лиц, владеющих основной частью использованного н ней фактического материала. Она
должна способствовать устранению некоторой узости перспективы, свойственной иногда некоторым нашим молодым математикам.
ТОМ 1. ОГЛАВЛЕНИЕ
Предисловие 3
Глава I. Общий взгляд на математику (А. Д. Александров)
§ 1. Особенности математики
§ 2. Арифметика 10
§ 3. Геометрия 20
§ 4. Арифметика и геометрия 24
§ 5. Эпоха элементарной математики 34
§ 6. Математика переменных величин 41
§ 7. Современная математика 52
§ 8. Сущность математики 60
§ 9. Закономерности развития математики 69
Глава II. Анализ (Л. А. Лаврентьев и С. М. Никольский) 79
§ 1. Введение 79
§ 2. Функция 85
§ 3. Предел 90
§ 4. Непрерывные функции 100
§ 5. Производная 103
§ 6. Правила дифференцирования 111
§ 7. Максимум и минимум. Исследование графиков функций .... 117
§ 8. Приращение и дифференциал функции . 125
§ 9. Формула Тейлора 130
§ 10. Интеграл 135
§ 11. Неопределенные интегралы. Техника интегрирования 143
§ 12. Функции многих переменных 147
§ 13. Обобщения понятия интеграла 160
§ 14. Ряды 167
Глава III. Аналитическая геометрия (Б. Н. Делоне) 180
§ 1. Введение 180
§ 2. Две основные идеи Декарта 181
§ 3. Простейшие 8адачи 183
§ 4. Исследование линий, выраженных уравнениями 1-й и 2-й степени . . 184
§ 5. Метод Декарта для решения алгебраических уравнений 3-йи4-й степени 186
§ 6. Общая теория диаметров Ньютона 189
§ 7. Эллипс, гипербола и парабола 190
§ 8. Приведение общего уравнения 2-й степени к каноническому виду . . 202
§ 9. Задание сил, скоростей и ускорений тройками чисел. Теория векторов 206
§ 10. Аналитическая геометрия в пространстве. Уравнение поверхности в пространстве и уравнения линии 211
§ 11. Преобразования аффинные и ортогональные 219
§ 12. Теория инвариантов 228
§ 13. Проективная геометрия 232
§ 14. Преобразования Лоренца 238
Заключение 245
Глава IV. Алгебра (Теория алгебраического уравнения) (В. П. Делоне) 249
§ 1. Введение. 249
§ 2. Алгебраическое решение уравнения 253
§ 3. Основная теорема алгебры 266
§ 4. Исследование расположения корней многочлена на комплексной плоскости. 276
§ 5. Приближенное вычисление корней 285
Именной указатель 293
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Математика, ее содержание, методы и значение, том 1, Александров А.Д., Колмогоров А.Н., Лаврентьев М.А. - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать - Книгу - Математика, ее содержание, методы и значение. ( В 3-х томах ) - Под ред. Александрова А.Д., Колмогорова А.Н., Лаврентьева М.А. - Том 1 - depositfiles.com
Скачать - Книгу - Математика, ее содержание, методы и значение. ( В 3-х томах ) - Под ред. Александрова А.Д., Колмогорова А.Н., Лаврентьева М.А. - Том 1 - letitbit.net
Дата публикации:
Теги: математика :: Александров :: Колмогоров :: Лаврентьев :: скачать книгу по математике бесплатно
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Методика построения графиков функций - Егерев В.К., Радунский Б.А., Тальский Д.А.
- Математический анализ, Продолжение курса, Ильин В.А., Садовничий В.А., Сендов Б.Х.
- Математические головоломки и развлечения - Мартин Гарднер
- Математические беседы - Дынкин Е.Б., Успенский В.А.
Предыдущие статьи:
- Математика - наука и профессия - Колмогоров А.Н.
- Математика на досуге - Лоповок Л.М.
- Математика и правдоподобные рассуждения - Джордж Пойа
- Математика для техникумов на базе средней школы - Валуцэ И.И., Дилигул Г.Д.