Обучалка в Телеграм

Высшая математика, практикум, часть 1, Гончаренко И.А., Отчик В.C., Сережкин В.Н., Терешенков В.И., 2011


Высшая математика, Практикум, Часть 1, Гончаренко И.А., Отчик В.C., Сережкин В.Н., Терешенков В.И., 2011.

  Первая часть практикума предназначена для курсантов и слушателей второго курса инженерного факультета ГУО «Командно-инженерный институт» МЧС Республики Беларусь. В ней рассмотрены примеры решения задач дифференциальному и интегральному исчислению функций одной переменной, линейной алгебре и аналитической геометрии. Приведены задачи для самостоятельного решения и ответы к ним.

Высшая математика, Практикум, Часть 1, Гончаренко И.А., Отчик В.C., Сережкин В.Н., Терешенков В.И., 2011

Системы координат на плоскости.
Числовой осью называют направленную прямую, на которой выбрано начало отсчета - точка О. и задана единица длины. Каждой точке x числовой оси соответствует действительное число, равное длине отрезка Ох, если x расположено правее точки О , и равное этой длине со знаком минус в противном случае. Пусть на плоскости выбран масштаб для измерения длин любых отрезков. Декартова прямоугольная система координат на плоскости определяется следующим образом. Через точку О - начало координат - на плоскости проведем две взаимно перпендикулярные числовые оси -горизонтальную Ох (ось абсцисс) и вертикальную Оу (ось ординат) так, как показано на рисунке 1.1. Пусть М - произвольная точка на координатной плоскости. Опустим из этой точки перпендикуляры МА и МВ на оси Ох и Оу соответственно. Декартовыми прямоугольными координатами х и у точки М называются числа х = ОА и у = ОВ (рис. 1.1).

ОГЛАВЛЕНИЕ
Предисловие
Глава 1. Дифференциальное и интегральное исчислении функций одной переменной
1.1. Приближенные числа
1.2. Системы координат на плоскости
1.3. Функции одной переменной
1.4. Предел последовательности
1.5. Предел функции
1.6. Производная функции
1.7. Дифференциал функции
1.8. Правило Лопиталя
1.9. Формула Тейлора
1.10. Экстремум функции одной переменной
1.11. Промежутки выпуклости и вогнутости графика функции
1.12. Асимптоты
1.13. Построение графика функции
Глава 2. Неопределенный интеграл
2.1. Комплексные числа
2.2. Неопределенный интеграл
2.3. Замена переменной в неопределенном интеграле.
2.4. Интегрирование по частям
2.5. Интегрирование рациональных функций
2.6. Интегрирование иррациональных функций
2.7. Интегрирование тригонометрических выражений
Глава 3. Определенный интеграл
3.1. Свойства определенного интеграла
3.2. Замена переменной в определенном интеграле
3.3. Интегрирование по частям в определенном интеграле
3.4. Приложения определенного интеграла
3.5. Физические приложения определенного интеграла
3.6. Интегралы с бесконечными пределами интегрирования
3.7. Интегралы от неограниченных функций
Глава 4. Линейная алгебра
4.1. Матрицы
4.2. Определитель матрицы
4.3. Ранг матрицы
4.4. Системы линейных алгебраических уравнений
4.5. Векторы.
Глава 5. Аналитическая геометрия
5.1. Уравнение линии на плоскости
5.2. Прямая линия на плоскости
5.3. Плоскость и прямая и в пространстве
5.4. Линии второго порядка
5.5. Исследование общего уравнения линии второго порядка
5.6. Поверхности второго порядка Ответы
Литература.



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Высшая математика, практикум, часть 1, Гончаренко И.А., Отчик В.C., Сережкин В.Н., Терешенков В.И., 2011 - fileskachat.com, быстрое и бесплатное скачивание.

Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу



Скачать - pdf - Яндекс.Диск.
Дата публикации:





Теги: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-12-21 23:05:56