Обучалка в Телеграм

Московские математические олимпиады, Гальперин Г.А., Толпыго А.К., Колмогоров А.Н., 1986

По кнопкам "Купить бумажную книгу" или "Купить электронную книгу" можно купить в официальных магазинах эту книгу, если она имеется в продаже, или похожую книгу. Результаты поиска формируются при помощи поисковых систем Яндекс и Google на основании названия и авторов книги.

Наш сайт не занимается продажей книг, этим занимаются вышеуказанные магазины. Мы лишь даем пользователям возможность найти эту или похожие книги в этих магазинах.

Список книг, которые предлагают магазины, можно увидеть перейдя на одну из страниц покупки, для этого надо нажать на одну из этих кнопок.

К сожалению, на данный момент у нас невозможно бесплатно скачать полный вариант книги. Ссылки на файлы изъяты с этой страницы по запросу обладателей прав на эти материалы.

Но вы можете попробовать скачать полный вариант, купив у наших партнеров электронную книгу здесь, если она у них есть наличии в данный момент.

Также можно купить бумажную версию книги здесь, если она у них есть наличии.



Московские математические олимпиады, Гальперин Г.А., Толпыго А.К., Колмогоров А.Н., 1986.
 
   Книга содержит задачи всех Московских математических олимпиад за 50 лет их проведения. К большинству задач даны отпеты, указания, решения. В книге много интересных задач, связанных с современными научными проблемами. Книга предназначена для учащихся VII—X классов средней школы, интересующихся математикой, а также может быть использована учителями во внеклассной работе.

Московские математические олимпиады, Гальперин Г.А., Толпыго А.К., Колмогоров А.Н., 1986


Примеры.
Через точку Р, лежащую вне окружности, проводятся всевозможные прямые, пересекающие эту окружность. Найти множество середин хорд, отсекаемых данной окружностью на этих прямых.

Дан треугольник ABC. Точка М, лежащая внутри него, движется параллельно стороне ВС до пересечения со стороной СА, затем параллельно стороне АВ до пересечения со стороной ВС, затем параллельно стороне СА и т. д. Доказать, что через некоторое число таких шагов точка вернется в исходное положение, и найти это число.

В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.

ОГЛАВЛЕНИЕ.
Предисловие редактора.
Предисловие авторов.
Из истории Московских олимпиад.
Указания к работе с книгой.
Часть I Задачи Московских математических олимпиад.
Часть II.
Решения, указания, ответы.
Приложение 1.
Приложение 2.
Литература.

Купить .

По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.

On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Дата публикации:






Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2025-04-16 01:58:30