Задачи по математическим методам физики, Колоколов И.В., Кузнецов Е.А., Мильштейн А.И., Подивилов Е.В., 2000.
Предлагаемый сборник задач - результат 15-летнего опыта преподавания по новой методике математических методов физики на физическом факультете Новосибирского государственного университета. Сборник включает в себя более 350 задач по уравнениям в частных производных, специальным функциям, асимптотическим методам, методу функций Грина, интегральным уравнениям, теории конечных групп, групп Ли и их применениям в физике. Книга рекомендована студентам, аспирантам и преподавателям физических и физико-технических специальностей. Все задачи снабжены ответами, а многие - подробными решениями. Сборник может быть полезным для самообразования.
Нелинейные уравнения в частных производных.
Помимо автомодельных решений, играющих важную роль в физике, для нелинейных уравнений в частных производных, вообще говоря, не существует общих методов решения. Однако иногда удается найти широкий класс решений или даже общее решение нелинейного уравнения, превратив его заменой переменных в линейное. Таких преобразований известно немного.
Для некоторых важных в физике эволюционных уравнений удается определить зависимость от времени интегральных характеристик решений без явного их построения. Это, в свою очередь, позволяет увидеть существенные черты решений, такие, как образование особенности за конечное время.
Особое место занимают нелинейные уравнения в частных производных первого порядка. Оказывается, что решение задачи Коши для такого уравнения сводится к нахождению общего решения некоторой системы обыкновенных дифференциальных уравнений. Рассмотрим для простоты случай двух переменных х и у.
Содержание
Линейные операторы.
Метод характеристик.
Линейные уравнения в частных производных 2-го порядка.
Автомодельность и нелинейные уравнения в частных производных.
Специальные функции.
Асимптотические методы.
Метод функций Грина.
Интегральные уравнения.
Группы и представления.
Непрерывные группы.
Применение теории групп в физике.
Сводка формул по специальным функциям.
Литература.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Задачи по математическим методам физики, Колоколов И.В., Кузнецов Е.А., Мильштейн А.И., Подивилов Е.В., 2000 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать книгу Задачи по математическим методам физики, Колоколов И.В., Кузнецов Е.А., Мильштейн А.И., Подивилов Е.В., 2000 - djvu - depositfiles.
Скачать книгу Задачи по математическим методам физики, Колоколов И.В., Кузнецов Е.А., Мильштейн А.И., Подивилов Е.В., 2000 - djvu - Яндекс.Диск.
Дата публикации:
Теги: задачник по математике :: математика :: Колоколов :: Кузнецов :: Мильштейн :: Подивилов
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Высшая математика в упражнениях и задачах, часть 1, Данко П.Е., Попов А.Г., Кожевникова Т.Я., 1986
- Сборник индивидуальных заданий по высшей математике, часть 2, Рябушко, 1991
- Избранные задачи, Сборник, Алексеев В.М., 1977
- Задачи Арнольда, Арнольд В.И., 2000
Предыдущие статьи:
- Сборник задач по элементарной математике повышенной трудности, Шахно К.У., 1965
- Задачи и упражнения по математическому анализу, Олехник С.Н., Виноградова И.А., Садовничий В.А., 1988
- Методы решения экзаменационных задач по математическому анализу, Бурцев А.А., 2010
- Задачи и упражнения по математическому анализу, Виноградова И.А., Олехник С.Н., Садовничий В.А., 1988