Обучалка в Телеграм

математика

Краткий курс математического анализа, том 2, Кудрявцев Л.Д., 2005

Краткий курс математического анализа, Том 2, Кудрявцев Л.Д., 2005.

 Излагаются традиционные разделы математического анализа: дифференциальное и интегральное исчисления функций многих переменных, гармонический анализ. В конце тома помещен краткий исторический очерк развития понятий математического анализа. Нумерация параграфов и рисунков продолжает нумерацию первого тома.
Второе издание — 1998 г.
Для студентов физико-математических и инженерно-физических специальностей.

Краткий курс математического анализа, Том 2, Кудрявцев Л.Д., 2005
Купить бумажную или электронную книгу и скачать и читать Краткий курс математического анализа, том 2, Кудрявцев Л.Д., 2005
 

Математические термины, справочник, Александрова Н.В., 1978

Математические термины, справочник, Александрова Н.В., 1978.

В настоящем справочнике рассматриваются вопросы, связанные с происхождением и историей математических терминов. Он содержит следующие сведения: кто и когда ввел то или иное математическое понятие, определение и т. п.; как оно называлось при своем первом появлении; кем был предложен современный термин; что он означает в переводе на русский язык; когда и кем введено обозначение.
Книга представляет интерес для студентов физико-автоматических факультетов, а также для преподавателей вузов.

Математические термины, справочник, Александрова Н.В, 1978
Скачать и читать Математические термины, справочник, Александрова Н.В., 1978
 

Математика, задания на лето, иду в 4 класс, Межуева Ю.В., 2006

Математика, задания на лето, иду в 4 класс, Межуева Ю.В., 2006.

Данное пособие предназначено для самостоятельной работы ребёнка, окончившего 3 класс. Представленные в нём задания и игры помогут закрепить знания, умения и навыки, необходимые для дальнейшего успешного обучения ребёнка.
Пособие адресовано учащимся начальной школы и родителям, может быть использовано в качестве дополнительного материала для работы в классе и во внеклассной работе.

Математика, задания на лето, иду в 4 класс, Межуева Ю.В., 2006
Купить бумажную или электронную книгу и скачать и читать Математика, задания на лето, иду в 4 класс, Межуева Ю.В., 2006
 

Математическая логика, алгебра, теория чисел, теория вероятностей, Колмогоров А.Н., Юшкевич А.П., 1978

Математическая логика, алгебра, теория чисел, теория вероятностей, Колмогоров А.Н., Юшкевич А.П., 1978.

Предыстория математической логики.

В трехтомной «Истории математики» (ИМ) математическая логика не рассматривалась. Поэтому анализу развития математической логики в XIX в.  мы предпошлем   краткий  обзор  ее предшествующей истории.
Первое дошедшее до нас систематическое построение и изложение логики содержат трактаты Аристотеля (384—322 гг. до н. э.), объединенные его комментаторами под общим названием «Органон». В «Органон» входят «Категории» (об именах), «Об истолковании» (о суждениях), «Первая Аналитика» (об умозаключениях), «Вторая Аналитика» (о доказательствах), «Топика» (о доказательстве, опирающемся на положения, представляющиеся вероятными) и примыкающее к ней «Опровержение софистических аргументов». Во «Второй Аналитике» изложена теория доказательств Аристотеля и сформулированы основные требования, предъявляемые к «доказывающей науке», в частности к математике. Подчеркивая строгость логических рассуждений Аристотеля, Лейбниц отметил: «Аристотель был первым,  кто писал математически в  нематематике» х.
Логика другого стиля, своеобразная логика высказываний, была развита философами мегарской школы, основателем которой был ученик Сократа Евклид из Мегар (ок. 450—380 до и. э.). Учеником Евклида был Евбулит из Милета (IV в. до н. э.), с именем которого связываются известные парадоксы — «Лжец», «Куча». Мегарская школа оканчивается Филоном (ок. 300 до н. э.). Однако примерно в это время учеником Филона Зеноном из Китиопа (ок. 336—264 до н. э.) создается школа стоиков, воспринявших основные идеи и стиль мегариков. Наиболее видным представителем стоиков был Хризипп (ок. 281—208 до н. э.), о котором в свое время говорили, что если бы боги нуждались в логике, то это была бы логика Хризиппа. Дошедшая до пас в отрывках логика мегарской и стоической школ удивительным образом предвосхищает современное исчисление высказываний.

Математическая логика, алгебра, теория чисел, теория вероятностей, Колмогоров А.Н., Юшкевич А.П., 1978

Символическая логика Г. В. Лейбница.

Лейбниц понимал логику в самом широком смысле: она не только искусство суждения и доказательства известных истин, как аналитика Аристотеля, во и искусство изобретения и открытия новых истин.
Изучение трудов Аристотеля произвело большое впечатление на молодого Лейбница и оказало влияние на формирование его логических взглядов. Лейбниц высоко ценил силлогистику Аристотеля. Он писал: «...изобретение силлогистической формы — одно из прекраснейших и даже важнейших открытий человеческого духа. Это своего рода универсальная математика, все значение которой еще не достаточно понято» 2.
Однако силлогистика Аристотеля является не единственной формой вывода; существуют и более сложные формы. К таким более сложным формам дедукции Лейбниц относит, например, правила сложения, умножения и перестановки членов пропорций у Евклида. То, что является результатом оперирования по этим правилам, носит достоверный характер, а сам процесс получения результата есть доказательство (argu-menta in forma) 3.
План усовершенствования и построения логики был у Лейбница таков.
Прежде всего нужно проанализировать все понятия, приводя их к сочетаниям наиболее простых понятий; перечень этих простых, неопределяемых  понятий  составит  «алфавит человеческих  мыслей».   Затем  из
этих простых исходных понятий все остальные понятия могут быть получены путем комбинирования. Анализ понятий позволит провести вместе с тем доказательства всех известных истин, т. е. составить своеобразный их  свод — «доказательную энциклопедию».


Оглавление.

ПРЕДИСЛОВИЕ
Глава первая МАТЕМАТИЧЕСКАЯ ЛОГИКА
Глава вторая АЛГЕБРА И АЛГЕБРАИЧЕСКАЯ ТЕОРИЯ ЧИСЕЛ
Глава третья ПРОБЛЕМЫ ТЕОРИИ ЧИСЕЛ
Глава четвертая ТЕОРИЯ ВЕРОЯТНОСТЕЙ
ЛИТЕРАТУРА (Ф. А. Медведев)
ОСНОВНЫЕ СОКРАЩЕНИЯ
ИМЕННОЙ УКАЗАТЕЛЬ (Л. Ф. Лапко)



Бесплатно скачать электронную книгу в удобном формате, смотреть и читать: Скачать - pdf - Яндекс.Диск.

 

Математический анализ, Продолжение курса, Ильин В.А., Садовничий В.А., Сендов Б.X., Тихонов А.Н., 1987

Математический анализ, Продолжение курса, Ильин В.А., Садовничий В.А., Сендов Б.X., Тихонов А.Н., 1987.
 
  Учебник представляет собой вторую часть (ч. 1 — 1985 г.) курса математического анализа, написанного в соответствии с единой программой, принятой в СССР и НРБ. В книге рассмотрены теория числовых и функциональных рядов, теория кратных, криволинейных и поверхностных интегралов, теория поля (включая дифференциальные формы), теория интегралов, зависящих от параметра, и теория рядов и интегралов. Фурье. Особенность книги — три четко отделяемых друг от друга уровня изложения: облегченный, основной и повышенный, что позволяет использовать ее как студентам технических вузов с углубленным изучением математического анализа, так и студентам механико-математических факультетов университетов.

Математический анализ, Продолжение курса, Ильин В.А., Садовничий В.А., Сендов Б.X., Тихонов А.Н., 1987
Скачать и читать Математический анализ, Продолжение курса, Ильин В.А., Садовничий В.А., Сендов Б.X., Тихонов А.Н., 1987
 

Математический анализ, начальный курс, Ильин В.А., Садовничий В.А., Сендов Б.X., Тихонов А.Н., 1985

Математический анализ, Начальный курс, Ильин В.А., Садовничий В.А., Сендов Б.X., Тихонов А.Н., 1985.
 
  Учебник представляет собой первую часть трехтомного курса математического анализа для высших учебных заведений СССР, Болгарии и Венгрии, написанного в соответствий с соглашением о сотрудничестве между Московским, Софийским и Будапештским университетами. Книга включает в себя теорию вещественных чисел, теорию пределов, теорию непрерывности функций, дифференциальное и интегральное исчисления функций одной переменной и их приложения, дифференциальное исчисление функций многих переменных и теорию неявных функций.

Математический анализ, Начальный курс, Ильин В.А., Садовничий В.А., Сендов Б.X., Тихонов А.Н., 1985
Скачать и читать Математический анализ, начальный курс, Ильин В.А., Садовничий В.А., Сендов Б.X., Тихонов А.Н., 1985
 

Математический анализ, часть 2, Зорич В.А., 2012

Математический анализ, Часть 2, Зорич В.А., 2012.
 
  Университетский учебник для студентов физико-математических специальностей. Может быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений.

Математический анализ, Часть 2, Зорич В.А., 2012
Скачать и читать Математический анализ, часть 2, Зорич В.А., 2012
 

Математический анализ, часть 1, Зорич В.А., 2012

Математический анализ, Часть 1, Зорич В.А., 2012.
 
 Университетский учебник для студентов физико-математических специальностей. Может быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений.

Математический анализ, Часть I, Зорич В.А., 2012
Скачать и читать Математический анализ, часть 1, Зорич В.А., 2012
 
Показана страница 807 из 1550