олимпиада по математике

LXV Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2002

LXV Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2002.

Задача №5. Илье Муромцу, Добрыне Никитичу и Алеше Поповичу за верную службу дали 6 монет: 3 золотых и 3 серебряных. Каждому досталось по две монеты. Илья Муромец не знает, какие монеты достались Добрыне, а какие Алёше, но знает, какие монеты достались ему самому. Придумайте вопрос, на который Илья Муромец ответит «да», «нет» или «не знаю», и по ответу на который Вы сможете понять, какие монеты ему достались. [6 баллов] (А. Чеботарёв)
Решение. Вот пример такого вопроса: «Правда ли, что у тебя золотых монет больше, чем у Алёши Поповича?»
Если у Ильи Муромца две золотые монеты, он скажет «да», поскольку у Алёши Поповича не может быть больше одной золотой монеты.
Если обе монеты Ильи серебряные, то у Алёши хотя бы одна золотая, и Илья Муромец ответит «нет».
Ну а если ему достались разные монеты, то он ответит «не знаю», так как у Алёши может оказаться как две золотые, так и две серебряные монеты.
Конечно, можно было задать и другие вопросы, например:
— Правда ли, что одному из двух других богатырей достались две серебряные монеты?
—  Верно ли, что два других богатыря получили хотя бы по одной золотой монете каждый?
— Если я заберу у тебя одну монету и дам вместо нее золотую, станет ли у тебя больше золотых?
(Заметьте, что в последнем вопросе не упоминаются монеты двух других богатырей, а только монеты, доставшиеся Илье Муромцу!)

LXV Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2002
Скачать и читать LXV Московская математическая олимпиада, Математический праздник, Арнольд В.Д., 2002
 

LXV Московская математическая олимпиада, 2002

LXV Московская математическая олимпиада, 2002.

10 класс
1. Тангенсы углов треугольника — натуральные числа. Чему они могут быть равны?     (А. Заславский)

2. Про положительные числа а, Ь, с известно, что.  Докажите, что a + b + c ЗаЬс.    (С. Злобин)
3.   В выпуклом четырёхугольнике ABCD точки Е и F являются серединами сторон ВС и CD соответственно. Отрезки АЕ, AF и EF делят четырёхугольник на 4 треугольника, площади которых равны последовательным натуральным числам. Каково наибольшее возможное значение площади треугольника ABD?                             (С. Шестаков)
4.   Каждый зритель, купивший билет в первый ряд кинотеатра, занял одно из мест в первом ряду. Оказалось, что все места в первом ряду заняты, но каждый зритель сидит не на своём месте. Билетёр может менять местами соседей, если оба сидят не на своих местах. Всегда ли он сможет рассадить всех на свои места?      (А. Шаповалов)
5.   В городе Удоеве выборы мэра проходят следующим образом. Если в очередном туре голосования никто из кандидатов не набрал больше половины голосов, то проводится следующий тур с участием всех кандидатов, кроме последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну; если кандидат набрал больше половины голосов, то он становится мэром и выборы заканчиваются.) Каждый избиратель в каждом туре голосует за одного из кандидатов.

LXV Московская математическая олимпиада, 2002
Скачать и читать LXV Московская математическая олимпиада, 2002
 

LXIV Московская математическая олимпиада, математический праздник, 2001

LXIV Московская математическая олимпиада, математический праздник, 2001.


6 класс.
Задача №1. Решите ребус: АХ • УХ = 2001. [4 балла] (А. Блинков)
Решение: 2001 = 3-23*29. Поэтому число 2001 можно представить в виде произведения двузначных чисел лишь следующими способами: 69 • 29 или 23 • 87.
Ответ: АХ = 29, УХ = 69 или наоборот, АХ = 69, УХ = 29.
Задача №2. Офеня1 купил на оптовом рынке партию ручек и предлагает покупателям либо одну ручку за 5 рублей, либо три ручки за 10 рублей. От каждого покупателя Офеня получает одинаковую прибыль. Какова оптовая цена ручки? [4 балла] (А. Саблин)
Решение: Если оптовая цена ручки х рублей, то 5 — х = 10 — Зx, откуда х = 2,5. Значит, оптовая цена — 2 рубля 50 копеек.
Ответ: Оптовая цена ручки — 2 рубля 50 копеек.

LXIV Московская математическая олимпиада, математический праздник, 2001
Скачать и читать LXIV Московская математическая олимпиада, математический праздник, 2001
 

LXIV Московская математическая олимпиада, 2001

LXIV Московская математическая олимпиада, 2001.

10 класс
1.  Существуют ли три квадратных трёхчлена, такие что каждый из них имеет корень, а сумма любых двух трёхчленов не имеет корней?
(А. Канель)
2.  Можно ли расставить охрану вокруг точечного объекта так, чтобы ни к объекту, ни к часовым нельзя было незаметно подкрасться? (Каждый часовой стоит неподвижно и видит на 100 м строго вперёд.)
(В. Клепцын)
3.  Приведите пример многочлена Р(х) степени 2001, для которого выполняется тождество
Р(х) + Р(1-х) = 1.
(В. Сендеров)
4.  В остроугольном треугольнике ABC проведены высоты АН а, ВНв и СНс. Докажите, что треугольник с вершинами в точках пересечения высот треугольников АН в Нc, ВНаНс, CHaHв равен треугольнику НаНвНс.                                                                         (А. Акопян)
5.  На двух клетках шахматной доски стоят чёрная и белая фишки. За один ход можно передвинуть любую из них на соседнюю по вертикали или горизонтали клетку (две фишки не могут стоять на одной клетке). Могут ли в результате таких ходов встретиться все возможные варианты расположения этих двух фишек, причём ровно по одному разу?
(А. Шаповалов)

LXIV Московская математическая олимпиада, 2001
Скачать и читать LXIV Московская математическая олимпиада, 2001
 

Олимпиады по математике, 3 класс, Орг А.О., 2014

Олимпиады по математике, 3 класс, Орг А.О., 2014.
 
   Данное пособие полностью соответствует федеральному государственному образовательному стандарту (второго поколения) для начальной школы.
Олимпиады по математике содержат варианты заданий для проведения школьных туров. В книге собраны занимательные и нестандартные задания, соответствующие возрастным особенностям детей и требованиям учебной программы.
Данные материалы призваны привить любовь к предмету, сформировать умение самостоятельно добывать знания, научить логически мыслить, а также помочь учителю в организации внеурочной деятельности по предмету.

Олимпиады по математике, 3 класс, Орг А.О., 2014
Скачать и читать Олимпиады по математике, 3 класс, Орг А.О., 2014
 

Олимпиады по математике, 1-4 классы, Дробышев Ю.А., 2013

Олимпиады по математике, 1-4 классы, Дробышев Ю.А., 2013.

   Данное пособие полностью соответствует федеральному государственному образовательному стандарту (второго поколения) для начальной школы.
В сборник включены материалы, которые можно использовать при организации и проведении математических олимпиад, конкурсов, кружковых занятий для младших школьников, дополнительной работы с учащимися, увлечёнными математикой.
Книга будет полезна учителям и родителям, заинтересованным в повышении уровня математических знаний детей и развитии их способностей.

Олимпиады по математике, 1-4 классы, Дробышев Ю.А., 2013
Скачать и читать Олимпиады по математике, 1-4 классы, Дробышев Ю.А., 2013
 

Международные математические олимпиады - Морозова Е.А. и др.

Название: Международные математические олимпиады. 1976.

Автор: Морозова Е.А. и др.

Задачи, решения, итоги. Пособие для учащихся

Международные математические олимпиады - Морозова Е.А. и др.

Книга адресована школьникам старших классов, увлекающимся математикой и любящим решать трудные задачи.

Она знакомит читателей с материалами семнадцати международных математических олимпиад. Основную ее часть составляют задачи, предлагавшиеся на этих олимпиадах, и подробные их решения.
Купить бумажную или электронную книгу и скачать и читать Международные математические олимпиады - Морозова Е.А. и др.
 
Показана страница 2 из 2