Обучалка в Телеграм

Все для школьников, студентов, учащихся, преподавателей и родителей - Обучалка - Obuchalka.org

Спектральные преобразования и солитоны, методы решения и исследования эволюционных уравнений, Калоджеро Ф., Дегасперис А., 1985

15.06.19 08:06
Спектральные преобразования и солитоны, методы решения и исследования эволюционных уравнений, Калоджеро Ф., Дегасперис А., 1985.

Монография известных итальянских ученых содержит весьма подробное и вместе с тем доступное изложение метода точного интегрирования ряда классов нелинейных уравнений в частных производных (основанного на изучении спектральных свойств некоторых линейных дифференциальных операторов), который дал начало развитию новой области математической физики, называемой теорией солитонов. Дается полный обзор современного состояния теории солитонов, излагаются новые результаты, полученные авторами.
Для специалистов, аспирантов и студентов, интересующихся теорией солитонов и ее приложениями.

Спектральные преобразования и солитоны, методы решения и исследования эволюционных уравнений, Калоджеро Ф., Дегасперис А., 1985
Скачать и читать Спектральные преобразования и солитоны, методы решения и исследования эволюционных уравнений, Калоджеро Ф., Дегасперис А., 1985
 

Геометрия, базовый курс с решениями и указаниями, ЕГЭ, олимпиады, экзамены в вуз, учебно-методическое пособие, Золотарёва Н.Д., Семендяева Н.Л., Федотов М.В., 2010

15.06.19 08:02
Геометрия, базовый курс с решениями и указаниями, ЕГЭ, олимпиады, экзамены в вуз, учебно-методическое пособие, Золотарёва Н.Д., Семендяева Н.Л., Федотов М.В., 2010.

Настоящее пособие составлено на основе задач вступительных экзаменов по математике в МГУ имени М. В. Ломоносова и задач единого государственного экзамена преподавателями факультета ВМК МГУ имени М. В. Ломоносова. Пособие содержит теоретический материал, подборку задач, а также идеи, указания (подсказки) и решения задач.
Рекомендуется школьникам при подготовке к сдаче единого государственного экзамена, абитуриентам при подготовке к поступлению как в МГУ, так и другие вузы, учителям математики, репетиторам, руководителям кружков и факультативов, преподавателям подготовительных курсов.

Геометрия, базовый курс с решениями и указаниями, ЕГЭ, олимпиады, экзамены в вуз, учебно-методическое пособие, Золотарёва Н.Д., Семендяева Н.Л., Федотов М.В., 2010
Скачать и читать Геометрия, базовый курс с решениями и указаниями, ЕГЭ, олимпиады, экзамены в вуз, учебно-методическое пособие, Золотарёва Н.Д., Семендяева Н.Л., Федотов М.В., 2010
 

Асимптотические разложения решений обыкновенных дифференциальных уравнений, Вазов В.

15.06.19 07:58
Асимптотические разложения решений обыкновенных дифференциальных уравнений, Вазов В.

Вниманию читателей предлагается книга профессора Вис-консинского университета Вольфганга Вазова, многие годы работавшего в области асимптотических методов теории дифференциальных уравнений.
Не стоит и говорить о том, что в настоящее время асимптотические методы продолжают развиваться, несмотря на бурное развитие численных методов, вызванное появлением быстродействующих вычислительных машин, — численные и асимптотические методы не исключают, а взаимно дополняют друг друга.
В последние годы внимание ученых, занимающихся асимптотическими методами теории дифференциальных уравнений, привлекла так называемая проблема сингулярных возмущений, поставленная перед математиками интенсивным развитием таких прикладных областей, как теория автоматического регулирования, квантовая механика, газодинамика, кинетика и др.

Асимптотические разложения решений обыкновенных дифференциальных уравнений, Вазов В.
Скачать и читать Асимптотические разложения решений обыкновенных дифференциальных уравнений, Вазов В.
 

Численные методы решения задач со свободной границей, Вабищевич П.Н., 1987

15.06.19 07:55
Численные методы решения задач со свободной границей, Вабищевич П.Н., 1987.

В монографии рассмотрены приближенные методы решения нелинейных краевых задач с неизвестной (свободной) границей. Классическим примером задач этого типа является проблема Стефана в теории теплопроводности. Приведены примеры задач со свободной границей в теплофизике, гидродинамике, теории упругости, физике плазмы. Рассмотрены основные вычислительные методы решения стационарных задач для эллиптическая уравнений второго и четвертого порядка: методы последовательного уточнения неизвестной границы, преобразования областей, методы штрафа. Отдельно выделен класс обратных задач со свободной границей. Приведены примеры численного решения прикладных задач, иллюстрирующие возможности развиваемых методов.
Дли специалистов по вычислительной математике и математическому моделированию, аспирантов и студентов старших курсов.

Численные методы решения задач со свободной границей, Вабищевич П.Н., 1987
Скачать и читать Численные методы решения задач со свободной границей, Вабищевич П.Н., 1987
 

Введение в численные методы решения дифференциальных уравнении, Ортега Д., Пул У., 1986

15.06.19 07:53
Введение в численные методы решения дифференциальных уравнении, Ортега Дж., Пул У., 1986.

Необходимость решения дифференциальных уравнений явилась одним из первоначальных и основных мотивов для развития как аналоговых, так и цифровых вычислительных машин. Численное решение таких задач и сейчас поглощает значительную часть машинного времени, предоставляемого современными ЭВМ. Цель этой книги - познакомить читателя с численными методами решения как обыкновенных дифференциальных уравнений, так и уравнений в частных производных, хотя в основном мы сосредоточиваем наше внимание на обыкновенных дифференциальных уравнениях и особенно на решении краевых задач для таких уравнений.
Во второй главе мы рассматриваем задачу Коши для обыкновенных дифференциальных уравнений. В гл. 3 и 4 рассматриваются конечно-разностные методы решения соответственно линейных и нелинейных двухточечных краевых задач. В гл. 5 описываются методы Галеркина и коллокакии. В гл. 6 рассматриваются задачи на собственные значения, а в гл. 7 и 8 -начальные и краевые задачи для дифференциальных уравнений в частных производных.

Введение в численные методы решения дифференциальных уравнении, Ортега Дж., Пул У., 1986
Скачать и читать Введение в численные методы решения дифференциальных уравнении, Ортега Д., Пул У., 1986
 

Методы решения геометрических задач, Василевский А.Б., 1969

15.06.19 07:50
Методы решения геометрических задач, Василевский А.Б., 1969.

Учебное пособие для математических факультетов педагогических институтов и университетов по курсам «Элементарная геометрия» и «Методика преподавания математики».
В пособии рассматриваются методы решения геометрических задач, заданных проекционным чертежом, использование геометрических преобразований при решении задач на доказательство и построение, алгебраический метод решения конструктивных задач, роль развертки как средства анализа и расчета. Приводятся задачи на вычисление и построение, условия которых выражены приближенными величинами. Излагаются способы конструирования разверток пространственных фигур и их моделей.
Пособие может быть использовано также учителями средней школы.

 Методы решения геометрических задач, Василевский А.Б., 1969
Скачать и читать Методы решения геометрических задач, Василевский А.Б., 1969
 

Быстро учимся решать уравнения, 1-4 класс, Узорова О.В., 2017

15.06.19 07:48
Быстро учимся решать уравнения, 1-4 класс, Узорова О.В., 2017.

Учебное пособие известных педагогов-практиков О. В. Узоровой и Е. А. Нефёдовой «Быстро учимся решать уравнения. 1-4-й классы» поможет школьнику научиться решать сложные и простые уравнения и автоматизировать этот навык. Нестандартные и занимательные упражнения на полях книги позволят развить мышление, внимание, память, математические способности ребёнка. Пособие можно использовать для работы дома и в классе по всем федеральным программам начальной школы.
Для начального образования

Быстро учимся решать уравнения, 1-4 класс, Узорова О.В., 2017
Купить бумажную или электронную книгу и скачать и читать Быстро учимся решать уравнения, 1-4 класс, Узорова О.В., 2017
 

Сборник конкурсных задач по математике с решениями, Шахно К.У., 1954

15.06.19 07:44
Сборник конкурсных задач по математике с решениями, Шахно К.У., 1954.

В «Сборнике» помещено 540 задач и вопросов по математике, предлагавшихся в 1946—1951 гг. на вступительных экзаменах в Ленинградский университет имени А. А. Жданова, Московский университет имени М. В. Ломоносова, Ленинградский политехнический институт имени М. И. Калинина, Ленинградский электротехнический институт имени В. И. Ульянова (Ленина) и другие высшие учебные заведения.
Задачи, по возможности, систематизированы и снабжены решениями.
«Сборник» ставит своей целью ознакомить оканчивающих среднюю школу и учителей с характером требований по математике, предъявляемых к поступающим в высшие учебные заведения, и тем самым содействовать устранению имеющегося разрыва между требованиями, предъявляемыми на выпускных экзаменах в школах, и требованиями, предъявляемыми на приемных экзаменах в вузах. Вместе с тем, та часть книги, которая содержит решения, может послужить методическим пособием как учащимся при подготовке к вступительным экзаменам, так и молодым учителям в их школьной работе.
В работе над составлением «Сборника» существенную помощь Автору оказали ценные советы заслуженного деятеля науки проф. Г. М. Фихтенгольца, проф. Д. К. Фаддеева, проф. Н. П. Еругина. Всем им автор приносит самую глубокую благодарность.

Сборник конкурсных задач по математике с решениями, Шахно К.У., 1954
Скачать и читать Сборник конкурсных задач по математике с решениями, Шахно К.У., 1954
 
Cтраница 8091 из 15004

RSS лента ГДЗ, ЕГЭ, ГИА, подготовка к экзаменам, книги, наука и обучение, презентации, словари, все для преподавателей, школьников 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 и 11 класса и студентов. А ты НАШОЛ то, что тебе нужно?Подписаться на RSS ленту ГДЗ, ЕГЭ, ГИА, подготовка к экзаменам, книги, готовые домашние задания, наука и обучение, анекдоты, презентации, словари, все для преподавателей, школьников для всех классов и студентов всех курсов. А ты Нашёл то, что тебе нужно?