Обыкновенные дифференциальные уравнения, Задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002.
В предлагаемом сборнике задач особое внимание уделено тем вопросам, которые недостаточно подробно освещены в имеющихся пособиях и которые, как показывает опыт, слабо усваиваются студентами.
Детально разобраны метод изоклин для уравнений первого и второго порядков, задачи нахождения ортогональных траекторий, линейная зависимость и независимость систем функций.
В задачник включено большое число задач на решение линейных уравнений с постоянными и переменными коэффициентами, задачи на устойчивость по Ляпунову, на применение операционного метода к решению дифференциальных уравнений и систем. Представлены также метод последовательных приближений, особые решения дифференциальных уравнений, уравнения с малым параметром при производной.
Приводится более 100 примеров с подробными решениями.
Примеры.
Пусть имеются для сосуда объемов V1 и V2 соответственно, наполненные газом. Давление газа в начальный момент времени равно Р1 в первом сосуде и Р2 —■ во втором. Сосуды соединены трубкой, по которой газ перетекает из одного сосуда в другой. Считая, что количество газа, перетекающего в одну секунду, пропорционально разности квадратов давлений, определить давления р1 и p2 сосудах в момент времени t.
Вещество А разлагается на два вещества X и Y со скоростью образования каждого из них, пропорциональной количеству неразложившегося вещества. Найти закон изменения количеств ж и у веществ X и У в зависимости от времени t, если при t = 0 имеем х = у = 0, а через час х = a/8, у = 3a/8, где а — первоначальное количество вещества А.
Оглавление
Глава 1. Дифференциальные уравнения первого порядка 3
§1. Основные понятия и определения 3
§2. Метод изоклин 9
§3. Метод последовательных приближений 15
§4. Уравнения с разделяющимися переменными и приводящиеся к ним 18
§5. Уравнения однородные и приводящиеся к ним 26
1. Однородные уравнения 26
2°. Уравнения, приводящиеся к однородным 28
§6. Линейные уравнения первого порядка. Уравнение Бернулли 32
1°. Линейные уравнения первого порядка 32
2°. Уравнение Бернулли 37
§7. Уравнения в полных дифференциалах. Интегрирующий множитель 40
1°. Уравнения в полных дифференциалах 40
2°. Интегрирующий множитель 42
§8. Дифференциальные уравнения первого порядка, не разрешенные относительно производной 45
1. Уравнения первого порядка n-й степени относительно у' 45
2°. Уравнения вида f(y,у') = 0 и f(x,у') = 0 47
3°. Уравнения Лагранжа и Клеро 49
§9. Уравнение Риккати 51
§10. Составление дифференциальных уравнений семейств линий. Задачи на траектории 53
1. Составление дифференциальных уравнений семейств линий 53
2°. Задачи на траектории 55
§11. Особые решения дифференциальных уравнений 58
§12. Разные задачи 67
Глава 2. Дифференциальные уравнения высших порядков 69
§13. Основные понятия и определения 69
§14. Дифференциальные уравнения, допускающие понижение порядка 71
§15. Линейные дифференциальные уравнения n-го порядка 79
1. Линейная независимость функций. Определитель Вронского. Определитель Грама 79
2°. Линейные однородные уравнения с постоянными коэффициентами 86
3°. Линейные неоднородные уравнения с постоянными коэффициентами
4°. Уравнения Эйлера 103
5°. Линейные дифференциальные уравнения с переменными коэффициентами. Метод Лагранжа 105
6°. Составление дифференциального уравнения по заданной фундаментальной системе решений 110
7°. Разные задачи 112
§16. Метод изоклин для дифференциальных уравнений второго порядка 114
§17. Краевые задачи 116
§18. Интегрирование дифференциальных уравнений при помощи рядов 121
1. Разложение решения в степенной ряд 121
2°. Разложение решения в обобщенный степенной ряд. Уравнение Бесселя 127
3°. Нахождение периодических решений линейных дифференциальных уравнений 137
4°. Асимптотическое интегрирование 140
5°. Приложения к интегрированию дифференциальных уравнений 143
Глава 3. Системы дифференциальных уравнений 148
§19. Основные понятия и определения 148
§20. Метод исключения (сведение системы дифференциальных уравнений к одному уравнению) 157
§21. Нахождение интегрируемых комбинаций. Симметрическая форма системы дифференциальных уравнений 161
1. Нахождение интегрируемых комбинаций 161
2°. Симметрическая форма системы дифференциальных уравнений 167
§22. Интегрирование однородных линейных систем с постоянными коэффициентами. Метод Эйлера 169
§23. Методы интегрирования неоднородных линейных систем с постоянными коэффициентами 175
1°. Метод вариации произвольных постоянных (метод Лагранжа) 176
2°. Метод неопределенных коэффициентов (метод подбора) 178
3°. Построение интегрируемых комбинаций (метод Даламбера) 182
§24. Применение преобразования Лапласа к решению линейных дифференциальных уравнений и систем 185
1. Общие сведения о преобразовании Лапласа 185
2°. Решение задачи Коши для линейных дифференциальных уравнений с постоянными коэффициентами 188
3°. Решение систем линейных дифференциальных уравнений с постоянными коэффициентами 191
Глава 4. Теория устойчивости 195
§25. Устойчивость по Ляпунову. Основные понятия и определения 195
§26. Простейшие типы точек покоя 199
§27. Метод функций Ляпунова 204
§28. Устойчивость по первому приближению 209
§29. Устойчивость решений дифференциальных уравнений по отношению к изменению правых частей уравнений 213
§30. Критерий Рауса—Гурвица 215
§31. Геометрический критерий устойчивости (критерий Михайлова) 217
§32. Уравнения с малым параметром при производной 219
Ответы 224
Приложение 1 248
Некоторые формулы из дифференциальной геометрии 248
Приложение 2 249
Основные оригиналы и их изображения 249.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Обыкновенные дифференциальные уравнения, Задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать pdf
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать книгу Обыкновенные дифференциальные уравнения, Задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002 - pdf - depositfiles.
Скачать книгу Обыкновенные дифференциальные уравнения, Задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002 - pdf - Яндекс.Диск.
Дата публикации:
Теги: задачник по математике :: математика :: Краснов :: Киселев :: Макаренко
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Сборник задач по математике для 9 классов физико-математической школы, Ширстова И.В., Сторожев А.М., 2001
- Демонстрационный вариант ГИА 2013 по математике, 9 класс
- ГИА 2013 по математике, 9 класс, демонстрационный вариант, Техно
- ГИА 2013, математика, 9 класс, Экзамен в новой форме, тренировочные варианты, Бунимович Е.А., Кузнецова Л.В.
Предыдущие статьи:
- Математика, 5 класс, тематические тестовые задания, Донец Л.П., 2012
- Математика, 2 класс, Моро М.И., CD, 2012
- 2000 задач и примеров по математике для начальной школы, Узорова О.В., Нефёдова Е.А., 2006
- Сборник задач по курсу математического анализа, Берман Г.Н., 2001