Алгебра, Углубленный курс с решениями и указаниями, Золотарева Н.Д., Попов Ю.А., Сазонов В.В., 2011


Алгебра, Углубленный курс с решениями и указаниями, Золотарева Н.Д., Попов Ю.А., Сазонов В.В., 2011.

    Настоящее пособие составлено на основе задач вступительных экзаменов по математике в МГУ имени М. В. Ломоносова и задач единого государственного экзамена преподавателями факультета ВМК МГУ имени М. В. Ломоносова. Пособие содержит теоретический материал, подборку задач, а также идеи, указания (подсказки) и решения задач.
Рекомендуется школьникам при подготовке к сдаче единого государственного экзамена, абитуриентам при подготовке к поступлению как в МГУ, так и другие ВУЗы, учителям математики, репетиторам, руководителям кружков и факультативов, преподавателям подготовительных курсов.

Алгебра, Углубленный курс с решениями и указаниями, Золотарева Н.Д., Попов Ю.А., Сазонов В.В., 2011

Рациональные и иррациональные числа.
Теоретический материал
Рациональным числом называется действительное число, представимое в виде несократимой дроби p/q, где р - целое число, q - натуральное число.

Иррациональным числом называется действительное число, непредставимое в виде несократимой дроби p/q.
Замечание 1. Любое рациональное число можно представить в виде конечной десятичной дроби или бесконечной периодической десятичной дроби, а любое иррациональное число — в виде бесконечной непериодической десятичной дроби.

Замечание 2. Сумма, разность, произведение и частное двух рациональных чисел всегда является рациональным числом. Сумма, разность, произведение и частное двух иррациональных чисел может оказаться как рациональным, так и иррациональным числом.

Доказательство иррациональности числа, как правило, проводится от противного. Предполагается, что заданное число можно представить в виде несократимой дроби, после чего полученное равенство с помощью алгебраических преобразований приводится к уравнению в целых числах, не имеющему решений.

ОГЛАВЛЕНИЕ
От редактора 6
Предисловие 7
Часть I: Теория и задачи 9
1. Элементы теории чисел 9
1.1. Целые числа. Делимость и остатки 9
1.2. Уравнения в целых числах 11
1.3. Смешанные задачи на целые числа 14
1.4. Рациональные и иррациональные числа 17
1.5. Сравнение чисел 19
2. Тригонометрические неравенства, обратные тригонометрические функции 23
2.1. Основные свойства арксинуса, арккосинуса, арктангенса и арккотангенса. Преобразование выражении с обратными тригонометрическими функциями 23
2.2. Уравнения и неравенства с обратными тригонометрическими функциями 27
2.3. Отбор решений в тригонометрических уравнениях. Тригонометрические неравенства 30
2.4. Смешанные задачи 33
3. Полезные преобразования и замены переменных 34
3.1. Использование формул сокращённого умножения, выделение полного квадрата 34
3.2. Замены переменных в рациональных уравнениях, неравенствах и системах 39
3.3. Замены переменных в иррациональных уравнениях, неравенствах и системах 42
3.4. Замены переменных в показательных и логарифмических уравнениях, неравенствах и системах 46
3.5. Замены в тригонометрических уравнениях и тригонометрические замены 50
4. Нестандартные текстовые задачи 53
4.1. Недоопределённые задачи 53
4.2. Неравенства в текстовых задачах 56
4.3. Оптимальный выбор, наибольшие и наименьшие значения 59
5. Использование свойств квадратного трёхчлена в задачах с параметрами 63
5.1. Исследование свойств квадратичной функции в зависимости от значений параметра. Теорема Виета 63
5.2. Теоремы о расположении корней квадратного трёхчлена на числовой оси 67
5.3. Смешанные задачи 73
6. Использование различных свойств функций и применение графических иллюстраций 75
6.1. Область определения функции, монотонность, периодичность, чётность и нечётность 75
6.2. Множество значений функции, промежутки знакопостоянства и монотонности 78
6.3. Функциональные уравнения и неравенства 83
6.4. Использование графических иллюстраций 89
7. Метод оценок 95
7.1. Рациональные и иррациональные уравнения и неравенства 95
7.2. Тригонометрические уравнения и неравенства 98
7.3. Уравнения и неравенства с логарифмическими и показательными функциями 104
8. Задачи на доказательство 106
8.1. Тригонометрические задачи на доказательство 106
8.2. Метод математической индукции 109
8.3. Доказательство неравенств и тождеств 111
9. Использование особенностей условия задачи 114
9.1. Оптимизация процесса решения, введение функций, искусственное введение параметров, смена ролей параметра и переменной 114
9.2. Чётность и симметричность по нескольким переменным, исследование единственности решения, необходимые и достаточные условия 118
9.3. Редукция задачи и переформулирование условия 123
9.4. Смешанные задачи 127
Часть II: Указания и решения 131
1. Элементы теории чисел 131

1.1. Целые числа. Делимость и остатки 131
1.2. Уравнения в целых числах 138
1.3. Смешанные задачи на целые числа 146
1.4. Рациональные и иррациональные числа 154
1.5. Сравнение чисел 159
2. Тригонометрические неравенства, обратные тригонометрические функции 169
2.1. Основные свойства арксинуса, арккосинуса, арктангенса и арккотангенса. Преобразование выражений с обратными тригонометрическими функциями 169
2.2. Уравнения и неравенства с обратными тригонометрическими функциями 180
2.3. Отбор решений в тригонометрических уравнениях. Тригонометрические неравенства 191
2.4. Смешанные задачи 202
3. Полезные преобразования и замены переменных 218
3.1. Использование формул сокращённого умножения, выделение полного квадрата 218
3.2. Замены переменных в рациональных уравнениях, неравенствах и системах 236
3.3. Замены переменных в иррациональных уравнениях, неравенствах и системах 245
3.4. Замены переменных в показательных и логарифмических уравнениях, неравенствах и системах 259
3.5. Замены в тригонометрических уравнениях и тригонометрические замены 276
4. Нестандартные текстовые задачи 284
4.1. Недоопределённые задачи 284
4.2. Неравенства в текстовых задачах 293
4.3. Оптимальный выбор, наибольшие и наименьшие значения 300
5. Использование свойств квадратного трехчлена в задачах с параметрами 312
5.1. Исследование свойств квадратичной функции в зависимости от значений параметра. Теорема Виета 312
5.2. Теоремы о расположении корней квадратного трехчлена на числовой оси 322
5.3. Смешанные задачи 337
6. Использование различных свойств функций и графических иллюстраций 353
6.1. Область определения функции, монотонность, периодичность, чётность и нечётность 353
6.2. Множество значений функции, промежутки знакопостоянства и монотонности 360
6.3. Функциональные уравнения и неравенства 375
6.4. Использование графических иллюстраций 392
7. Метод оценок 413
7.1. Рациональные и иррациональные уравнения и неравенства 413
7.2. - Тригонометрические уравнения и неравенства 422
7.3. Уравнения и неравенства с логарифмическими и показательными функциями 442
8. Задачи на доказательство 458
8.1. Тригонометрические задачи на доказательство 458
8.2. Метод математической индукции 468
8.3. Доказательство неравенств и тождеств 477
9. Использование особенностей условия задачи 491
9.1. Оптимизация процесса решения, введение функций, искусственное введение параметров, смена ролей параметра и переменной 491
9.2. Чётность и симметричность по нескольким переменным, исследование единственности решения, необходимые и достаточные условия 500
9.3. Редукция задачи и переформулирование условия 511
9.4. Смешанные задачи 518
Ответы 527
Литература 536.

Купить книгу Алгебра, Углубленный курс с решениями и указаниями, Золотарева Н.Д., Попов Ю.А., Сазонов В.В., 2011 .

Купить книгу Алгебра, Углубленный курс с решениями и указаниями, Золотарева Н.Д., Попов Ю.А., Сазонов В.В., 2011 .

По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.

On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Дата публикации:






Теги: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2020-08-12 04:24:48