Обучалка в Телеграм

Алгебра, 9 класс, задачник, Звавич Л.И., Рязановский А.Р., Семенов П.В., 2008

К сожалению, на данный момент у нас невозможно бесплатно скачать полный вариант книги. Ссылки на файлы изъяты с этой страницы по запросу обладателей прав на эти материалы.

Но вы можете попробовать скачать полный вариант, купив у наших партнеров электронную книгу здесь, если она у них есть наличии в данный момент.

Также можно купить бумажную версию книги здесь.



Алгебра, 9 класс, Задачник, Звавич Л.И., Рязановский А.Р., Семенов П.В., 2008.

   Данное пособие предусматривает занятия с учащимися, проявляющими интерес и способности к математике. Цель работы в соответствующих классах — формирование у школьников устойчивого интереса к предмету, дальнейшее развитие их математических способностей, ориентация на профессии, связанные с математикой, на применение математических методов в различных отраслях науки и техники. Структура пособия соответствует построению учебника А.Г. Мордковича, Н.П. Николаева «Алгебра–9».

Алгебра, 9 класс, Задачник, Звавич Л.И., Рязановский А.Р., Семенов П.В., 2008

Пример.
Составьте квадратное неравенство с положительным старшим коэффициентом, решением которого являлось бы:
а) два открытых луча;
б) два замкнутых луча;
в) интервал;
г) отрезок;
д) только одна точка;
е) все множество R действительных чисел; ж) пустое множество.

Составьте квадратное неравенство с отрицательным старшим коэффициентом, решением которого являлось бы:
а) два открытых луча;
б) два замкнутых луча;
в) интервал;
г) отрезок;
д) только одна точка;
е) все множество R действительных чисел; ж) пустое множество.

Постройте график функции у = f(х) и укажите:
1) нули функции;
2) промежутки знакопостоянства;
3) точки перемены знака (1.06—1.08):

ОГЛАВЛЕНИЕ
Предисловие 3
Глава 1. НЕРАВЕНСТВА С ОДНОЙ ПЕРЕМЕННОЙ. СИСТЕМЫ И СОВОКУПНОСТИ НЕРАВЕНСТВ
§ 1. Рациональные неравенства 4
§ 2. Множества и операции над ними 11
§ 3. Системы неравенств 16
§ 4. Совокупности неравенств 23
§ 5. Неравенства с модулями 27
§ 6. Иррациональные неравенства 34
§ 7. Задачи с параметрами 40
Глава 2. СИСТЕМЫ УРАВНЕНИЙ
§ 8. Уравнения с двумя переменными 49
§ 9. Неравенства с двумя переменными 56
§ 10. Основные понятия, связанные с системами уравнений и неравенств с двумя переменными 61
§ 11. Методы решения систем уравнений 64
§ 12. Однородные системы. Симметрические системы 73
§ 13. Иррациональные системы. Системы с модулями 77
§ 14. Системы уравнений как математические модели реальных ситуаций 84
Глава 3. ЧИСЛОВЫЕ ФУНКЦИИ
§ 15. Определение числовой функции. Область определения, область значений функции 94
§ 16. Способы задания функций 106
§ 17. Свойства функций 116
§ 18. Четные и нечетные функции 127
§ 19. Функции у = хm (m € Z), их свойства и графики 138
§ 20. Функция у = 3/x, ее свойства и график 146
Глава 4. ПРОГРЕССИИ
§ 21. Числовые последовательности — определение и способы задания 150
§ 22. Свойства числовых последовательностей 156
§ 23. Арифметическая прогрессия 161
§ 24. Геометрическая прогрессия 175
§ 25. Метод математической индукции 186
Глава 5. ЭЛЕМЕНТЫ КОМБИНАТОРИКИ, СТАТИСТИКИ И ТЕОРИИ ВЕРОЯТНОСТЕЙ
§ 26. Комбинаторные задачи 191
§ 27. Статистика — дизайн информации 196
§ 28. Простейшие вероятностные задачи 202
§ 29. Экспериментальные данные и вероятности событий 206
Глава 6. КОРЕНЬ n-й СТЕПЕНИ
§ 30. Понятие корня n-й степени из действительного числа. Функции у = n/х, их свойства и графики 211
§ 31. Свойства корня n-й степени 216
Глава 7. ТРИГОНОМЕТРИЧЕСКИЕ ФУНКЦИИ
§ 32. Числовая прямая и числовая окружность 219
§ 33. Числовая окружность на координатной плоскости 228
§ 34. Синус и косинус. Тангенс и котангенс 238
§ 35. Тригонометрические функции числового аргумента 248
§ 36. Тригонометрические функции углового аргумента 254
§ 37. Функции у = sin x, у = cos x, их свойства и графики 259
Глава 8. ПРЕОБРАЗОВАНИЕ ТРИГОНОМЕТРИЧЕСКИХ ВЫРАЖЕНИЙ
§ 38. Тригонометрические функции суммы и разности аргументов 264
§ 39. Формула вспомогательного угла 268
§ 40. Формулы приведения 271
§ 41. Формулы двойного аргумента. Формулы кратного аргумента. Формулы понижения степени 275
§ 42. Формулы преобразования произведения тригонометрических функций в сумму и суммы в произведение 281
§ 43. Преобразования тригонометрических выражений 285
Повторение: задачи вступительных экзаменов в ВУЗы 288
Ответы 303.

Купить.

По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.

По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.

On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Дата публикации:






Теги: :: :: :: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-11-21 00:37:39