Обучалка в Телеграм

математика

Теория чисел, Михелович Ш.Х., 1967

Теория чисел, Михелович Ш.Х., 1967.

   Книга написана в качестве учебного пособия по курсу теории чисел для физико-математических факультетов педагогических институтов и предназначается не только для студентов стационара, но и заочных факультетов. Поэтому изложение проводится по возможности в доступной форме, причем особое внимание уделяется разъяснению вводимых понятий.
Материал книги в основном излагается в объеме, предусмотренном программой, и в той же последовательности.
Несколько подробнее рассмотрены «Числовые функции». Это сделано потому, что эта область теории чисел, ярко свидетельствующая о большом вкладе в науку русской и советской математических школ теории чисел, очень богата интересными для учителя вопросами. В остальном материал, выходящий за рамки программы, дается, как правило, обзорно.

Теория чисел, Михелович Ш.Х., 1967
Скачать и читать Теория чисел, Михелович Ш.Х., 1967
 

Анализ многомерных данных, Избранные главы, Эсбенсен К., 2005

Анализ многомерных данных, Избранные главы, Эсбенсен К., 2005.

Применение современных подходов к моделированию многомерных (многофакторных) процессов и явлений, основанных на использовании проекционных математических методов, позволяет выделять в больших массивах данных скрытые переменные и анализировать связи, существующие в изучаемой системе. В данном издании представлены основные фундаментальные понятия билинейного (проекционного) моделирования многомерных данных и намечены основные рамки, в которых должно проводиться такое моделирование. В книгу включены многочисленные примеры, которые позволят усвоить этот подход. Предназначена широкому кругу специалистов, интересующихся современными методами анализа данных.

Анализ многомерных данных, Избранные главы, Эсбенсен К., 2005
Скачать и читать Анализ многомерных данных, Избранные главы, Эсбенсен К., 2005
 

Теорема о раскраске карт, Рингель Г., 1977

Теорема о раскраске карт, Рингель Г., 1977.

   Каково наименьшее число цветов, достаточное для раскраски любом карты, изображенной на сфере, таким образом, чтобы соседние страны были окрашены в разные цвета? Эта знаменитая «проблема четырех красок» еще в конце прошлого века была обобщена на случай карт, расположенных на произвольных поверхностях. И хотя сама проблема четырех красок более ста лет оставалась нерешенной, задача о раскраске карт для всех ориентируемых поверхностей, отличных от сферы, была недавно решена. Полное решение этой задачи и составляет основу книги Г. Рингеля — известного специалиста в области теории графов, внесшего большой вклад в решение задачи о раскраске карт.
Книга написана доступно и будет полезна широкому кругу читателей, интересующихся современными проблемами математики.

Теорема о раскраске карт, Рингель Г., 1977
Скачать и читать Теорема о раскраске карт, Рингель Г., 1977
 

Тензорная тригонометрия, Теория и приложения, Нинул А.С., 2004

Тензорная тригонометрия, Теория и приложения, Нинул А.С., 2004.

   В монографии изложены основы тензорной тригонометрии, базирующейся на квадратичных метриках в многомерных арифметических пространствах. В теоретическом плане тензорная тригонометрия естественным образом дополняет классические разделы аналитической геометрии и линейной алгебры. В практическом плане она даёт инструментарий для решения разнообразных геометрических задач в многомерных аффинных, евклидовых и псевдоевклидовых пространствах. Движения, определяемые тензорной тригонометрией, задают геометрию в малом для вложенных в них подпространств постоянной кривизны.
Кроме того, тензорная ротационная и деформационная тригонометрия в элементарной форме применена к изучению движений в неевклидовых геометриях - сферической и гиперболической, а также в теории относительности. В результате получены наиболее общие - матричные, векторные и скалярные представления этих движений в весьма наглядной тригонометрической форме. Новые методы тензорной тригонометрии предназначены для применения в ряде областей математики и математической физики.
Для специалистов в областях многомерных геометрий арифметических пространств, аналитической геометрии, линейной алгебры, неевклидовых геометрий и теории относительности; для преподавателей, аспирантов и студентов физико-математических специальностей.

Тензорная тригонометрия, Теория и приложения, Нинул А.С., 2004
Скачать и читать Тензорная тригонометрия, Теория и приложения, Нинул А.С., 2004
 

Интегральное исчисление, том 3, Эйлер Л., 1958

Интегральное исчисление, Том III, Эйлер Л., 1958.

Трехтомное «Интегральное исчисление» Эйлера завершает грандиозный курс математического анализа и его геометрических приложений; первым звеном этого курса является двухтомное «Введение в анализ бесконечно малых» (1748, 1749), вторым — «Дифференциальное исчисление» (1755). К работе над «Интегральным исчислением» Эйлер приступил в октябре 1759 г. Через четыре года, в декабре 1763 г., Эйлер сообщал (в письме к X. Гольдбаху), что рукопись «Интегрального исчисления» завершена полностью.

Интегральное исчисление, Том III, Эйлер Л., 1958
Скачать и читать Интегральное исчисление, том 3, Эйлер Л., 1958
 

Интегральное исчисление, том 2, Эйлер Л., 1957

Интегральное исчисление, Том II, Эйлер Л., 1957.

Трехтомное «Интегральное исчисление» Эйлера завершает грандиозный курс математического анализа и его геометрических приложений; первым звеном этого курса является двухтомное «Введение в анализ бесконечно малых» (1748, 1749), вторым — «Дифференциальное исчисление» (1755). К работе над «Интегральным исчислением» Эйлер приступил в октябре 1759 г. Через четыре года, в декабре 1763 г., Эйлер сообщал (в письме к X. Гольдбаху), что рукопись «Интегрального исчисления» завершена полностью.

Интегральное исчисление, Том II, Эйлер Л., 1957
Скачать и читать Интегральное исчисление, том 2, Эйлер Л., 1957
 

Интегральное исчисление, том 1, Эйлер Л., 1956

Интегральное исчисление, Том I, Эйлер Л., 1956.

Трехтомное «Интегральное исчисление» Эйлера завершает грандиозный курс математического анализа и его геометрических приложений; первым звеном этого курса является двухтомное «Введение в анализ бесконечно малых» (1748, 1749), вторым — «Дифференциальное исчисление» (1755). К работе над «Интегральным исчислением» Эйлер приступил в октябре 1759 г. Через четыре года, в декабре 1763 г., Эйлер сообщал (в письме к X. Гольдбаху), что рукопись «Интегрального исчисления» завершена полностью.

Интегральное исчисление, Том I, Эйлер Л., 1956
Скачать и читать Интегральное исчисление, том 1, Эйлер Л., 1956
 

Интеграл, мера и производная, Шилов Г.Е., Гуревич Б.Л., 1967

Интеграл, мера и производная, Шилов Г.Е., Гуревич Б.Л., 1967.

В книге излагаются в современном виде общая теория интеграла для числовых функций и весь круг проблем, связывающих интеграл, меру и производную. В основу изложения теории интеграла положена схема Даниэля. В § 1 излагается общая теория n-кратного интеграла Римана как предела нижних интегральных сумм или, что то же, как предела интегралов возрастающей последовательности некоторых ступенчатых функций. Такое определение интеграла допускает широкое обобщение путем аксиоматизации некоторых свойств интегралов от ступенчатых функций. В § 2 исходным объектом является совокупность элементарных функций на произвольном множестве с интегралом, подчиненным некоторым аксиомам. При расширении совокупности элементарных функции путем монотонных предельных переходов и образования разностей получается пространство суммируемых функций, полное относительно нормы, связанной с интегралом. В §§ 3—5 рассматриваются классические интегралы Лебега, Римана—Стилтьеса и Лебега—Стилтьеса от функции и переменных. В §§ 6—8 строится теория меры на основании общей схемы § 2. В § 9 на пространстве с мерой рассматриваются аддитивные функции множеств и устанавливается их каноническое разложение на абсолютно непрерывную, сингулярно непрерывную и дискретную части. Абсолютно непрерывные составляющие как функции множеств суть интегралы по этим множествам от некоторой суммируемой функции — это известная теорема Радона—Никодима. В § 10 рассматриваются три типа дифференцирования функций множеств: относительно сети де Посселя. относительно системы Витали и относительно системы всех суммируемых подмножеств. Во всех случаях устанавливается существование производных и их совпадение с плотностью абсолютно непрерывной составляющей.

Интеграл, мера и производная, Шилов Г.Е., Гуревич Б.Л., 1967
Скачать и читать Интеграл, мера и производная, Шилов Г.Е., Гуревич Б.Л., 1967
 
Показана страница 138 из 1548