Геометрия, задачи на готовых чертежах для подготовки к ЕГЭ, 10-11 классы, Балаян Э.Н., 2013.
Предлагаемая вниманию старшеклассников книга содержит более 600 разноуровневых задач по всем основным темам геометрии (стереометрии) 10-11 классов на готовых чертежах, скомпонованных в 80 таблицах.
Эти задачи не только помогут учащимся углубить свои знания, проверить и закрепить практические навыки при систематическом изучении курса стереометрии, но и предоставляют хорошую возможность для самостоятельной эффективной подготовки к успешной сдаче ЕГЭ и вступительным экзаменам по математике.
Для удобства пользования книгой приводятся подробные решения к наиболее трудным задачам, а также краткие теоретические сведения, сопровождаемые определениями, рисунками и необходимыми справочными материалами. Ко всем задачам даны ответы.
Пособие является прекрасным дополнением к существующим учебникам геометрии, предназначено учителям, старшеклассникам общеобразовательных школ, лицеев, колледжей как для подготовки к урокам, так и сдаче ЕГЭ, а также репетиторам.
Многогранники.
К этому разделу отнесем два основных типа задач:
1) задачи на вычисление;
2) задачи на сечения.
К задачам на вычисление относятся те, где требуется найти линейные элементы правильных призм и пирамид, а именно: сторону основания, боковое ребро, апофему и т. д., далее угловые элементы: двугранные углы при основании, линейные углы при вершине; площади: боковой поверхности, полной поверхности, основания.
В основе второго типа задач — задач на построение лежит умение построить сечение данного многогранника плоскостью и определить вид этого сечения. В задачах этого типа сечение задается точкой и прямой, тремя точками, двумя точками и прямой, параллельной плоскостью сечения и т. д.
Многогранником называется тело, граница которого состоит из многоугольников.
Эти многоугольники называются гранями, их стороны — ребрами, а вершины — вершинами многоугольника.
Отрезки, соединяющие две вершины, не лежащие на одной грани, называются диагоналями многогранника.
Многогранники бывают выпуклые и невыпуклые.
Если многогранник целиком расположен по одну сторону от плоскости каждой его грани, то он называется выпуклым.
Например, тетраэдр, октаэдр, параллелепипед — выпуклые многогранники.
Все грани выпуклого многогранника являются выпуклыми многоугольниками.
В выпуклом многограннике сумма всех плоских углов при каждой его вершине меньше 360°.
СОДЕРЖАНИЕ.
Предисловие.
Раздел I. Краткие теоретические сведения по курсу стереометрии X—XI классов.
Раздел II. Задачи в таблицах.
Раздел III. Разные задачи.
Раздел IV. Решения наиболее трудных задач.
Литература.
Купить .
По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.
По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «ЛитРес», и потом ее скачать на сайте Литреса.
По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.
On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.
Теги: Геометрия :: ЕГЭ :: 10 класс :: 11 класс :: Балаян :: 2013
Смотрите также учебники, книги и учебные материалы:
- Задание 18 из ЕГЭ по математике, Задача с параметром
- Задание 15 из ЕГЭ по математике, Неравенство
- ЕГЭ-2013, математика, типовые экзаменационные варианты, 10 вариантов, Семенова А.Л., Ященко И.В., 2012
- ЕГЭ, математика, Задачи типа С5, уравнения, неравенства и системы с параметрами, Балаян Э.Н., 2014
- Теория чисел в задаче №19 профильного ЕГЭ по математике, учебное пособие, Сергеев А.Э., Соколова И.В., 2019
- Все задания с ЕГЭ по математике, профильный уровень, Основная волна, Ягубов Р.Б., 2018
- Готовимся к ЕГЭ по математике, Трушин Б., Шарич В.
- Математика, ЕГЭ 2019, книга 2, профильный уровень, Мальцев Д.А., Мальцев А.Л., Мальцева П.И., 2019