Обучалка в Телеграм

геометрия

Теоремы и задачи комбинаторной геометрии, Болтянский В.Г., Гохберг И.Ц., 1965

Теоремы и задачи комбинаторной геометрии, Болтянский В.Г., Гохберг И.Ц., 1965.

  В теории выпуклых фигур есть много изящных результатов, вполне доступных пониманию школьников и в то же время представляющих интерес для специалистов-математиков. Некоторые из таких результатов мы и хотим предложить вниманию читателя. Мы расскажем о комбинаторных задачах теории выпуклых фигур, связанных главным образом с разбиением фигур на «меньшие» части.
Теоремы и задачи, излагаемые в книге, вошли в математику совсем недавно: самой старой из них недавно исполнилось 30 лет, а многие из теорем находятся еще в «младенческом» возрасте — они опубликованы в специальных математических журналах за последние 5 лет.

Теоремы и задачи комбинаторной геометрии, Болтянский В.Г., Гохберг И.Ц., 1965
Скачать и читать Теоремы и задачи комбинаторной геометрии, Болтянский В.Г., Гохберг И.Ц., 1965
 

Мир математики, в 40 томах, том 4, когда прямые искривляются, неевклидовы геометрии, Гомес Ж., 2014

Мир математики, в 40 томах, том 4, когда прямые искривляются, неевклидовы геометрии, Гомес Ж., 2014.

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Мир математики, в 40 томах, том 4, когда прямые искривляются, неевклидовы геометрии, Гомес Ж., 2014
Скачать и читать Мир математики, в 40 томах, том 4, когда прямые искривляются, неевклидовы геометрии, Гомес Ж., 2014
 

Учимся решать задачи по геометрии, учебно-методическое пособие, Полонский В.Б., Рабинович Е.М., Якир М.С., 1996

Учимся решать задачи по геометрии, учебно-методическое пособие, Полонский В.Б., Рабинович Е.М., Якир М.С., 1996.

Пособие, написанное в форме конспекта опытного учителя, содержит более 1000 задач с большим числом примеров, их решениями и разбором. На большом и разнообразном материале авторам удалось систематизировать по методам решений основные типы задач школьной планиметрии. В основе систематизации также лежит принцип от простого к сложному.
Для учащихся 7-11 классов, абитуриентов, преподавателей математики.

Учимся решать задачи по геометрии, учебно-методическое пособие, Полонский В.Б., Рабинович Е.М., Якир М.С., 1996
Скачать и читать Учимся решать задачи по геометрии, учебно-методическое пособие, Полонский В.Б., Рабинович Е.М., Якир М.С., 1996
 

Вредная геометрия, учебное пособие для учащихся средних школ, Белый Е.К., 2017

Вредная геометрия, учебное пособие для учащихся средних школ, Белый Е.К., 2017.

В книге в форме рассказа разобрано несколько классических геометрических софизмов, исследование которых способствует развитию логического мышления учащихся. Учебное пособие адресовано ученикам и учителям средней школы, а также всем, кто интересуется математикой.

Вредная геометрия, учебное пособие для учащихся средних школ, Белый Е.К., 2017

Скачать и читать Вредная геометрия, учебное пособие для учащихся средних школ, Белый Е.К., 2017
 

Базовый курс начертательной геометрии, Конакова И.П., Нестерова Т.В., 2019

Базовый курс начертательной геометрии, Конакова И.П., Нестерова Т.В., 2019.

В учебном пособии рассмотрены вопросы, связанные с основами метода проецирования: получения изображения геометрических моделей объектов на плоскости, решения задач по построению линий пересечения поверхностей различными способами, нахождению натуральной величины сечения и т.д. Теоретический материал и примеры решения задач используются для самостоятельной работы студентов при выполнении индивидуальных заданий, которые приведены в приложениях. Пособие предназначено для студентов, обучающихся по программе бакалавриата, изучающих начертательную геометрию.

Базовый курс начертательной геометрии, Конакова И.П., Нестерова Т.В., 2019

Скачать и читать Базовый курс начертательной геометрии, Конакова И.П., Нестерова Т.В., 2019
 

Геометрия, базовый курс с решениями и указаниями, ЕГЭ, олимпиады, экзамены в вуз, учебно-методическое пособие, Золотарёва Н.Д., Семендяева Н.Л., Федотов М.В., 2010

Геометрия, базовый курс с решениями и указаниями, ЕГЭ, олимпиады, экзамены в вуз, учебно-методическое пособие, Золотарёва Н.Д., Семендяева Н.Л., Федотов М.В., 2010.

Настоящее пособие составлено на основе задач вступительных экзаменов по математике в МГУ имени М. В. Ломоносова и задач единого государственного экзамена преподавателями факультета ВМК МГУ имени М. В. Ломоносова. Пособие содержит теоретический материал, подборку задач, а также идеи, указания (подсказки) и решения задач.
Рекомендуется школьникам при подготовке к сдаче единого государственного экзамена, абитуриентам при подготовке к поступлению как в МГУ, так и другие вузы, учителям математики, репетиторам, руководителям кружков и факультативов, преподавателям подготовительных курсов.

Геометрия, базовый курс с решениями и указаниями, ЕГЭ, олимпиады, экзамены в вуз, учебно-методическое пособие, Золотарёва Н.Д., Семендяева Н.Л., Федотов М.В., 2010
Скачать и читать Геометрия, базовый курс с решениями и указаниями, ЕГЭ, олимпиады, экзамены в вуз, учебно-методическое пособие, Золотарёва Н.Д., Семендяева Н.Л., Федотов М.В., 2010
 

Методы решения геометрических задач, Василевский А.Б., 1969

Методы решения геометрических задач, Василевский А.Б., 1969.

Учебное пособие для математических факультетов педагогических институтов и университетов по курсам «Элементарная геометрия» и «Методика преподавания математики».
В пособии рассматриваются методы решения геометрических задач, заданных проекционным чертежом, использование геометрических преобразований при решении задач на доказательство и построение, алгебраический метод решения конструктивных задач, роль развертки как средства анализа и расчета. Приводятся задачи на вычисление и построение, условия которых выражены приближенными величинами. Излагаются способы конструирования разверток пространственных фигур и их моделей.
Пособие может быть использовано также учителями средней школы.

 Методы решения геометрических задач, Василевский А.Б., 1969
Скачать и читать Методы решения геометрических задач, Василевский А.Б., 1969
 

Геометрические задачи с практическим содержанием, Смирнова И.М., Смирнов В.А., 2010

Геометрические задачи с практическим содержанием, Смирнова И.М., Смирнов В.А., 2010.

   Пособие содержит геометрические задачи с практическим содержанием, решение которых позволит: усилить практическую направленность изучения геометрии, выработать необходимые навыки решения практических задач, сформировать представления о соотношениях размеров реальных объектов и связанных с ними геометрических величин, повысить интерес, мотивацию и, как следствие, эффективность изучения геометрии.

Геометрические задачи с практическим содержанием, Смирнова И.М., Смирнов В.А., 2010
Скачать и читать Геометрические задачи с практическим содержанием, Смирнова И.М., Смирнов В.А., 2010
 
Показана страница 76 из 198