Группы Эйлера и арифметика геометрических прогрессий, Арнольд В.И., 2003.
Теорема. Класс N представляет собой идеал в коммутативной мультипликативной группе нечетных чисел: если n принадлежит классу N, то и произведение n на любое нечетное натуральное число тоже ему принадлежит. Пример. Классу (3+) принадлежат числа 31, 43, 63, 91, 93, 117, 129, 133, 155, 157, 171, 189, 215, 217, 223, 229, 247, 259, 273, 279, 283, 301 (полужирным выделены простые числа). Образующими полугруппы являются те из них, которые не кратны другим: это все простые элементы и еще 63, 91, 117, 133, 171, 247, 259. Странное наблюдение, для которого не видно пока никаких оснований, состоит в том, что вычеты всех этих образующих по модулю 9 являются квадратичными (принадлежат четверке {0,1,4,7}).
