Обучалка в Телеграм

Олимпиада школьников Ломоносов по математике, 2005-2015, Бегунц А.В., 2016

К сожалению, на данный момент у нас невозможно бесплатно скачать полный вариант книги. Ссылки на файлы изъяты с этой страницы по запросу обладателей прав на эти материалы.

Но вы можете попробовать скачать полный вариант, купив у наших партнеров электронную книгу здесь, если она у них есть наличии в данный момент.

Также можно купить бумажную версию книги здесь.



Олимпиада школьников Ломоносов по математике, 2005-2015, Бегунц А.В., 2016.

   В книге приведены задания олимпиады «Ломоносов» по математике 2005-2015 гг., т. е. за все годы её проведения. Все задачи снабжены подробными решениями или ответами. Дана полезная информация будущим участникам олимпиады.

Олимпиада школьников Ломоносов по математике, 2005-2015, Бегунц А.В., 2016


Примеры.
Основанием пирамиды служит треугольник со сторонами 5, 12 и 13, а её высота образует с высотами боковых граней (опущенными из той же вершины) одинаковые углы, не меньшие 30°. Какой наибольший объём может иметь такая пирамида?

Группа отдыхающих в течение 2 ч 40 мин каталась на моторной лодке по реке с постоянной скоростью (относительно воды) попеременно то по течению, то против: в каждую сторону—в общей сложности не менее чем по 1 ч. В итоге лодка прошла путь в 40 км (относительно берега) и, отчалив от пристани А, причалила к пристани В на расстоянии 10 км от Л. В какую сторону текла река? Какова при этих условиях максимальная скорость её течения?

Точки А, В и С лежат на одной прямой. Отрезок АВ является диаметром первой окружности, а отрезок ВС—диаметром второй окружности. Прямая, проходящая через точку А, пересекает первую окружность в точке D и касается второй окружности в точке Е, BD = 9, BE = 12. Найдите радиусы окружностей.

Содержание.
К читателю.
Задания заключительных этапов (10-11 классы).
2005 год.
2006 год.
2007 год.
2008 год.
2009 год.
2010 год.
2011 год.
2012 год.
2013 год.
2014 год.
2015 год.
Решения заключительных этапов (10-11 классы).
2005 год.
2006 год.
2007 год.
2008 год.
2009 год.
2010 год.
2011 год.
2012 год.
2013 год.
2014 год.
2015 год.
Тренировочные работы.  
5-7 классы.
8-9 классы.
10-11 классы.
Решения тренировочных работ.
5-7 классы.
8-9 классы.
10-11 классы.
Исследовательские задачи.  
Решения исследовательских задач.
Литература.

Купить .

По кнопкам выше и ниже «Купить бумажную книгу» и по ссылке «Купить» можно купить эту книгу с доставкой по всей России и похожие книги по самой лучшей цене в бумажном виде на сайтах официальных интернет магазинов Лабиринт, Озон, Буквоед, Читай-город, Литрес, My-shop, Book24, Books.ru.

По кнопке «Купить и скачать электронную книгу» можно купить эту книгу в электронном виде в официальном интернет магазине «Литрес», если она у них есть в наличии, и потом ее скачать на их сайте.

По кнопке «Найти похожие материалы на других сайтах» можно найти похожие материалы на других сайтах.

On the buttons above and below you can buy the book in official online stores Labirint, Ozon and others. Also you can search related and similar materials on other sites.


Дата публикации:






Теги: :: ::


Следующие учебники и книги:
Предыдущие статьи:


 


 

Книги, учебники, обучение по разделам




Не нашёл? Найди:





2024-12-22 00:46:25