Задачи и упражнения по математической логике и теории алгоритмов, Игошин В.И., 2007.
Сборник содержит задачи и упражнения по всем традиционным разделам курса математической логики и теории алгоритмов. В каждом параграфе подробно рассмотрены разнообразные типовые примеры и приведены многочисленные задачи разного уровня сложности для самостоятельного решения.
Для студентов университетов, технических и педагогических ВУЗов, обучающихся по специальностям «Математика», «Прикладная математика».
Предисловие
Глава I. АЛГЕБРА ВЫСКАЗЫВАНИЙ
§ 1. Основные понятия алгебры высказываний
Высказывания и операции над ними . Формулы алгебры высказываний . Тавтологии алгебры высказываний . Логическое следование . Равносильность формул . Упрощение систем высказываний
§ 2. Нормальные формы для формул алгебры высказываний и их применение
Отыскание нормальных форм. Применение нормальных форм . Нахождение следствий из посылок . Нахождение посылок для данных следствий.
§ 3. Приложение алгебры высказываний к логико-математической практике
Обратная и противоположная теоремы . Принцип полной дизъюнкции . Необходимые и достаточные условия . Упрощение систем высказываний . Правильные и неправильные рассуждения . Нахождение всех следствий из посылок . Нахождение посылок для следствий . «Логические» задачи .
Глава II. БУЛЕВЫ ФУНКЦИИ
§ 4. Понятие булевой функции и свойства булевых функций
Число булевых функций . Равенство булевых функций . Свойства булевых функций .
§ 5. Специальные классы булевых функций
Полиномы Жегалкина и линейные булевы функции . Двойственность и самодвойственные булевы функции . Монотонные булевы функции . Булевы функции, сохраняющие нуль и сохраняющие единицу .
§ 6. Полные системы и функционально замкнутые классы булевых функций
Полные и неполные системы булевых функций . Применение теоремы Поста. Функционально замкнутые классы булевых функций . Базисы булевых функций .
§ 7. Применение булевых функций к релейно-контактным схемам
Анализ релейно-контактных схем . Синтез релейно-контактных схем .
Глава III. ФОРМАЛИЗОВАННОЕ ИСЧИСЛЕНИЕ ВЫСКАЗЫВАНИЙ
§ 8. Построение формализованного исчисления высказываний и исследование системы аксиом на независимость.
Построение выводов из аксиом . Построение выводов из гипотез . Теорема о дедукции и ее применение . Производные правила вывода и их применение . Независимость системы аксиом .
Глава IV. ЛОГИКА ПРЕДИКАТОВ
§ 9. Основные понятия логики предикатов
Понятие предиката и операции над предикатами . Множество истинности предиката . Равносильность и следование предикатов . Формулы логики предикатов, их интерпретация и классификация . Равносильность формул логики предикатов . Тавтологии логики предикатов. Равносильные преобразования формул. Проблемы разрешимости для обще значимости и выполнимости формул. Логическое следование формул логики предикатов .
§ 10. Применение логики предикатов
к логико-математической практике
Записи на языке логики предикатов . Правильные и неправильные рассуждения . Логика предикатов и алгебра множеств . Равносильные преобразования неравенств и уравнений при их решении .
§ 11. Формализованное исчисление предикатов
Построение выводов из аксиом . Построение выводов из гипотез . Теорема о дедукции и ее применение .
Глава V. ЭЛЕМЕНТЫ ТЕОРИИ АЛГОРИТМОВ
§ 12. Машины Тьюринга
Применение машин Тьюринга к словам . Конструирование машин Тьюринга . Вычислимые по Тьюрингу функции .
§ 13. Рекурсивные функции
Примитивно рекурсивные функции . Примитивно рекурсивные предикаты . Оператор минимизации. Общерекурсивные и частично рекурсивные функции .
§ 14. Нормальные алгоритмы Маркова
Марковские подстановки . Нормальные алгоритмы и их применение к словам . Нормально вычислимые функции .
Ответы
Список литературы
Примеры.
1.15. Из трех данных высказываний А, В, С постройте такое составное высказывание, которое:
а) истинно тогда и только тогда, когда все данные высказывания истинны;
б) ложно тогда и только тогда, когда все данные высказывания ложны;
в) истинно тогда и только тогда, когда все данные высказывания ложны;
г) ложно тогда и только тогда, когда все данные высказывания истинны;
д) истинно тогда и только тогда, когда истинны высказывания А и В;
е) истинно тогда и только тогда, когда ложны высказывания А и В;
ж) ложно тогда и только тогда, когда истинны высказывания An В;
з) ложно тогда и только тогда, когда ложны высказывания А и В;
и) истинно тогда и только тогда, когда все данные высказывания либо истинны, либо ложны;
к) ложно тогда и только тогда, когда все данные высказывания либо истинны, либо ложны;
л) ложно тогда и только тогда, когда ложно лишь высказывание С.
Решение, л) Искомое высказывание должно быть ложно лишь в одном случае: когда высказывание Сложно, а оба высказывания А и В истинны. Таким высказыванием могло бы стать высказывание вида M→С, где высказывание М должно быть истинно и так сконструировано из высказываний А и В, что если хотя бы одно из высказываний А или В будет ложным, то ложным станет и М. Ясно, что в качестве М следует взять конъюнкцию А ∩ В. Итак, искомое высказывание имеет следующий вид: (А ∩ В) → С.
Бесплатно скачать электронную книгу в удобном формате, смотреть и читать:
Скачать книгу Задачи и упражнения по математической логике и теории алгоритмов, Игошин В.И., 2007 - fileskachat.com, быстрое и бесплатное скачивание.
Скачать djvu
Ниже можно купить эту книгу по лучшей цене со скидкой с доставкой по всей России.Купить эту книгу
Скачать книгу Задачи и упражнения по математической логике и теории алгоритмов, Игошин В.И., 2007 - djvu - depositfiles.
Скачать книгу Задачи и упражнения по математической логике и теории алгоритмов, Игошин В.И., 2007 - djvu - Яндекс.Диск.
Дата публикации:
Теги: математика :: математическая логика :: теории алгоритмов :: Игошин
Смотрите также учебники, книги и учебные материалы:
Следующие учебники и книги:
- Задачи с величинами
- Задачи по стереометрии, координатный метод, Бунеева Н.А., Каргаполов А.М., 2006
- Задачи по стереометрии, векторный метод, Бунеева Н.А., Каргаполов А.М., 2006
- Задачи на умножение и деление
Предыдущие статьи:
- Задачи вступительных экзаменов по математике, Медведев Г.Н., 2004
- Задачи вступительных экзаменов, Егоров А.А., Тихомирова В.А., 2008
- Задачи вступительных экзаменов по математике, Власов В.К., Воронин В.П., Григорьев Е.А., Денисов Д.В., Панферов В.С., Потапов М.М., Разгулин А.В., Серов В.С., Тихомиров В.В., Ушаков В.Г., Федотов М.В., Хайлов Е.Н., Шикин Е.В., Щедрин Б.М., 2001
- ГИА по математике, 9 класс, Задания 16, 2012