Обучалка в Телеграм

Виленкин

Математика, 5 класс, Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И., 2005

Математика, 5 класс, Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И., 2005.

   Вы продолжаете изучать одну из самых древних и важных наук — математику. Многими математическими знаниями люди пользовались еще в глубокой древности — тысячи лет назад. Они были необходимы древним купцам и строителям, воинам и землемерам, жрецам и путешественникам.
И в наши дни ни одному человеку не обойтись в жизни без хорошего знания математики. Рабочий и моряк, инженер и полевод, летчик и домашняя хозяйка выполняют различные вычисления, используют электронные калькуляторы и более сложные и умные вычислительные машины.
В учебнике вы найдете много интересных и полезных для себя сведений не только по математике, но и об истории, технике, окружающем мире.

Математика, 5 класс, Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И., 2005
Купить бумажную или электронную книгу и скачать и читать Математика, 5 класс, Виленкин Н.Я., Жохов В.И., Чесноков А.С., Шварцбурд С.И., 2005
 

Специальные функции и теория представлений групп, Виленкин Н.Я.

Специальные функции и теория представлений групп, Виленкин Н.Я.

   Решение очень многих важных задач математической физики и техники не может быть выражено с помощью обычных, элементарных функций, и тогда приходят на помощь специальные функции (функции Лежандра, функции Бесселя, гипергеометрическая функция и т. д.). Теория специальных функций очень детально разработана и включает в себя необозримое множество формул и соотношений, выводимых самыми разнообразными методами, что затрудняет ее изучение.
Целью данной книги является изложение теории специальных функций с единой точки зрения при помощи теории представлений групп. Этот подход позволяет единым образом получать всевозможные соотношения между специальными функциями, как ранее известные, так и новые.
Книга предназначена для математиков, физиков (как теоретиков, так и экспериментаторов), научных работников в области техники, а также может быть использована аспирантами и студентами старших курсов университетов.

Специальные функции и теория представлений групп, Виленкин Н.Я.
Скачать и читать Специальные функции и теория представлений групп, Виленкин Н.Я.
 

Алгебра, 9 класс, Виленкин Н.Я., Сурвилло Г.С., Симонов А.С., Кудрявцев А.И., 1996

Алгебра, 9 класс, Виленкин Н.Я., Сурвилло Г.С., Симонов А.С., Кудрявцев А.И., 1996.

Фрагмент из книги.
В 70-х годах XIX в. немецкий математик Георг Кантор (1845—1918) создал новую область математики — теорию бесконечных множеств. Через несколько десятилетий почти вся математика была перестроена на теоретико-множественной основе.

Алгебра, 9 класс, Виленкин Н.Я., Сурвилло Г.С., Симонов А.С., Кудрявцев А.И., 1996
Купить бумажную или электронную книгу и скачать и читать Алгебра, 9 класс, Виленкин Н.Я., Сурвилло Г.С., Симонов А.С., Кудрявцев А.И., 1996
 

Факультативный курс, Избранные вопросы математики, 7-8 классы, Виленкин Н.Я., Гутер Р.С., Земляков А.Н., Никольская И.Л., 1978

Факультативный курс, Избранные вопросы математики, 7-8 классы, Виленкин Н.Я., Гутер Р.С., Земляков А.Н., Никольская И.Л., 1978.

   Пособие написано в соответствии с новой программой факультативного курса. В каждом разделе изложение теоретического материала сопровождается набором задач для его закрепления.

Факультативный курс, Избранные вопросы математики, 7-8 классы, Виленкин Н.Я., Гутер Р.С., Земляков А.Н., Никольская И.Л., 1978
Купить бумажную или электронную книгу и скачать и читать Факультативный курс, Избранные вопросы математики, 7-8 классы, Виленкин Н.Я., Гутер Р.С., Земляков А.Н., Никольская И.Л., 1978
 

Справочная математическая библиотека, Функциональный анализ, Крейн С.Г., Виленкин Н.Я., 1964

Справочная математическая библиотека, Функциональный анализ, Крейн С.Г., Виленкин Н.Я., 1964.

    Настоящий выпуск серии СМБ содержит большой материал, в основном группирующийся вокруг теории операторов и операторных уравнений. Здесь изложены основные понятия и методы функционального анализа, теория операторов в гильбертовом пространстве и в пространствах с конусом, теория нелинейных операторных уравнений, теория нормированных колец, приложения к уравнениям в частных производных, к интегральным уравнениям. Отдельная глава посвящена основным операторам квантовой механики. Значительное место в книге занимает изложение теории обобщенных функций, снабженное рядом таблиц.
Характер изложения здесь конспективный; в логически связной форме разъясняются математические факты; теоремы и формулы, как правило, даются без доказательств. Главное внимание уделяется идейной стороне вопроса, не заслоненной излишними деталями.
Книга предназначена для математиков, механиков и физиков. В ней найдут много полезного для себя студенты и аспиранты соответствующих специальностей.

Справочная математическая библиотека, Функциональный анализ, Крейн С.Г., Виленкин Н.Я., 1964
Скачать и читать Справочная математическая библиотека, Функциональный анализ, Крейн С.Г., Виленкин Н.Я., 1964
 

Современные основы школьного курса математики, Пособие для студентов педагогических институтов, Виленкин Н.Я., Дуничев К.И., Калужнин Л.А., Столяр А.А., 1980

Современные основы школьного курса математики, Пособие для студентов педагогических институтов, Виленкин Н.Я., Дуничев К.И., Калужнин Л.А., Столяр А.А., 1980.

В данном пособии показаны роль и место важнейших понятий современной математики в школьном курсе, раскрываются связи между различными разделами математики и содержание теоретико множественного, алгебраического, логического и других аспектов в изложении основ школьной математики. Книга предназначена в качестве учебного пособия для студентов педагогических институтов весьма полезна для учителей математики, представляет интерес для всех интересующихся проблемами современной математики.

Современные основы школьного курса математики, Пособие для студентов педагогических институтов, Виленкин Н.Я., Дуничев К.И., Калужнин Л.А., Столяр А.А., 1980
Купить бумажную или электронную книгу и скачать и читать Современные основы школьного курса математики, Пособие для студентов педагогических институтов, Виленкин Н.Я., Дуничев К.И., Калужнин Л.А., Столяр А.А., 1980
 

Комбинаторика, Виленкин Н.Я., 1969

Комбинаторика, Виленкин Н.Я., 1969.

   На русском языке очень мало книг по комбинаторике. Помимо совсем элементарных книг типа школьных учебников, можно указать лишь на переводные книги М. Холла «Комбинаторный анализ», ИЛ, 1963; Дж. Риордана «Введение в комбинаторный анализ», ИЛ, 1963, и Г. Дж. Райзера «Комбинаторная математика», «Мир», 1965.
В предлагаемой вниманию читателя книге о комбинаторных проблемах рассказывается в занимательной, популярной форме. Тем не менее в ней разбираются и некоторые довольно сложные комбинаторные задачи, дается понятие о методах рекуррентных соотношений и производящих функций.

Комбинаторика, Виленкин Н.Я., 1969
Скачать и читать Комбинаторика, Виленкин Н.Я., 1969
 

Математика, 5 класс, учебник для общеобразовательных учреждений, Виленкин Н.Я., 2008

Математика, 5 класс, Учебник для общеобразовательных учреждений, Виленкин Н.Я., 2008.

Вы продолжаете изучать одну из самых древних и важных наук — математику. Многими математическими знаниями люди пользовались еще в глубокой древности — тысячи лет назад. Они были необходимы древним купцам и строителям, воинам и землемерам, жрецам и путешественникам. И в наши дни ни одному человеку не обойтись в жизни без хорошего знания математики. Рабочий и моряк, инженер и полевод, летчик и домашняя хозяйка выполняют различные вычисления, используют электронные калькуляторы и более сложные и умные вычислительные машины. Основа хорошего понимания математики — умение считать, думать, рассуждать, находить удачные решения задач. Все эти навыки и способности вы можете выработать, если будете настойчивы, трудолюбивы и внимательны на уроках, будете самостоятельно и с интересом заниматься дома. В учебнике вы найдете много интересных и полезных для себя сведений не только по математике, но и об истории, технике, окружающем мире.

Математика, 5 класс, Учебник для общеобразовательных учреждений, Виленкин Н.Я., 2008
Скачать и читать Математика, 5 класс, учебник для общеобразовательных учреждений, Виленкин Н.Я., 2008
 
Показана страница 3 из 16