Обучалка в Телеграм

учебник по математике

Подготовка к математической олимпиаде, Начальная школа, 2-4 классы, Гейдман Б.П., Мишарина И.Э., 2007

Подготовка к математической олимпиаде, Начальная школа, 2-4 классы, Гейдман Б.П., Мишарина И.Э., 2007.
 
   Пособие предназначено для подготовки детей к олимпиаде по математике в начальной школе. Представленный материал соответствует определенному году обучения и систематизирован по темам. Предполагается, что вместе с ребенком могут решать эти задачи родители. Учитель и родители имеют возможность разобрать с ребенком любую задачу: к каждой задаче даются ответ и решение.
Учителя найдут в книге также много интересного материала для уроков, занятий математического кружка и для проведения олимпиады в школе.

Подготовка к математической олимпиаде, Начальная школа, 2-4 классы, Гейдман Б.П., Мишарина И.Э., 2007
Скачать и читать Подготовка к математической олимпиаде, Начальная школа, 2-4 классы, Гейдман Б.П., Мишарина И.Э., 2007
 

Летняя математическая олимпиадная школа СУНЦ МГУ 2005, Шарич В., 2006

Летняя математическая олимпиадная школа СУНЦ МГУ 2005, Шарич В., 2006.
 
   Книга является сборником материалов Летней математической олимпиадной школы СУНЦ МГУ, проведенной в июне 2005 года. В качестве материалов представлены подробные содержания лекций и полная задачная база, использованная на семинарских занятиях.
Для школьников, студентов, преподавателей и руководителей кружков, а также всех, кто испытывает удовольствие от красивых математических сюжетов и интересных задач.

Летняя математическая олимпиадная школа СУНЦ МГУ 2005, Шарич В., 2006
Скачать и читать Летняя математическая олимпиадная школа СУНЦ МГУ 2005, Шарич В., 2006
 

Теория вероятностей, Учебное пособие, Чернова Н.И., 2009

Теория вероятностей, Учебное пособие, Чернова Н.И., 2009.

Учебное пособие содержит семестровый курс лекций по теории вероятностей для студентов экономических специальностей. Учебное пособие соответствует требованиям Государственного образовательного стандарта к профессиональным образовательным программам по специальности 080116 — «Математические методы в экономике».

Теория вероятностей, Учебное пособие, Чернова Н.И., 2009
Скачать и читать Теория вероятностей, Учебное пособие, Чернова Н.И., 2009
 

1001 олимпиадная и занимательная задачи по математике, Балаян Э.Н., 2008

1001 олимпиадная и занимательная задачи по математике, Балаян Э.Н., 2008.
 
   В учебном пособии рассмотрены различные методы решения олимпиадных задач разного уровня сложности для учащихся 5—11 классов. Часть задач посвящена таким, уже ставшим классическими, темам, как делимость и остатки, уравнения в целых числах, инварианты, принцип Дирихле и т.п. Ко многим задачам даны решения, к остальным — ответы и указания. Авторские задачи (их более 700) отмечены значком (А). В заключительной части книги приводятся занимательные задачи творческого характера, вызывающие повышенный интерес не только у школьников, но и у взрослых читателей.
Пособие предназначено ученикам 5—11 классов, учителям математики для подготовки детей к олимпиадам, студентам математических факультетов педагогических вузов и всем любителям математики.

1001 олимпиадная и занимательная задачи по математике, Балаян Э.Н., 2008
Скачать и читать 1001 олимпиадная и занимательная задачи по математике, Балаян Э.Н., 2008
 

Элементарный курс теории вероятностей, Стохастические процессы и финансовая математика, Чжун К.Л., АитСахлиа Ф., 2014

Элементарный курс теории вероятностей, Стохастические процессы и финансовая математика, Чжун К.Л., АитСахлиа Ф., 2014.
 
   Перевод 4-го издания популярного учебника по теории вероятностей и ее приложениям, написанного известными американскими математиками из Станфордского университета. Четвертое издание дополнено двумя новыми главами, посвященными финансовой математике.
Для студентов, преподавателей, исследователей и практиков в экономике, психологии, социологии, медицине и в других областях, где используются статистические методы и теория вероятностей.

Элементарный курс теории вероятностей, Стохастические процессы и финансовая математика, Чжун К.Л., АитСахлиа Ф., 2014
Купить бумажную или электронную книгу и скачать и читать Элементарный курс теории вероятностей, Стохастические процессы и финансовая математика, Чжун К.Л., АитСахлиа Ф., 2014
 

Математика, 1 класс, Хилько А.А., 1999

Математика, 1 класс, Хилько А.А., 1999.
 
Фрагмент из книги:
В овощную палатку привезли 7 бочек с солёными огурцами и помидорами. 3 бочки были с солёными помидорами. Сколько бочек с солёными огурцами привезли в палатку? Почему задачу нужно решать вычитанием?

Математика, 1 класс, Хилько А.А., 1999
Купить бумажную или электронную книгу и скачать и читать Математика, 1 класс, Хилько А.А., 1999
 

Теория меры и тонкие свойства функций, Эванс Л.К., Гариепи Р.Ф., 2002

Теория меры и тонкие свойства функций, Эванс Л.К., Гариепи Р.Ф., 2002.
 
   Книга издана на английском языке (Measure Theory and Fine Properties of Functions, CRC PRESS, Roca Raton, Ann Arbo London) в 1992 г. Авторы дают систематическое изложение центральных результатов вещественного анализа на Rn, играющих первостепенную роль в теории дифференциальных уравнений с частными производными, геометрии и других разделах математики. На основе геометрической теории меры исследуются свойства функций различных функциональных классов Особое внимание уделяется вопросам интегрирования и дифференцирования. Среди обсуждаемых в книге вопросов — меры Хаусдорфа и емкости, теорема Радемахера (дифференцируемость почти всюду липшицевых функций), теорема Александрова (дважды дифференцируемость почти всюду выпуклых функций), замена переменных для липшищевых отображений Rn в Rm, свойства функций с ограниченной вариацией и множеств с конечным периметром и др.
Для студентов математических факультетов университетов, специалистов по математическому анализу, математической физике, а также математиков различных специальностей.

Теория меры и тонкие свойства функций, Эванс Л.К., Гариепи Р.Ф., 2002
Скачать и читать Теория меры и тонкие свойства функций, Эванс Л.К., Гариепи Р.Ф., 2002
 

Неархимедов анализ и его приложения, Хренников А.Ю., 2003

Неархимедов анализ и его приложения, Хренников А.Ю., 2003.
 
   Предлагаемая монография представляет собой краткое введение r анализ над неархимедовыми числовыми нолями и приложения этого анализа к теоретической физике (в частности, основам Qp-значной квантовой механики), теории вероятностей и обработке изображений.
Для научных работников и студентов старших курсов, специализирующихся в функциональном анализе, теории обобщенных функций, теории вероятностей, теоретической физике (квантовой теории и космологии), обработке изображений, моделировании биологических процессов.

Неархимедов анализ и его приложения, Хренников А.Ю., 2003
Скачать и читать Неархимедов анализ и его приложения, Хренников А.Ю., 2003
 
Показана страница 9 из 478