Обучалка в Телеграм

учебник по алгебре

Алгебра, Ленг С.

Алгебра, Ленг С.

   Автор книги, видный американский математик, профессор Колумбийского университета С. Ленг, хорошо знаком советскому читателю по двум вышедшим ранее монографиям "Алгебраические числа" и "Введение в теорию дифференцируемых многообразий" (издательство "Мпр", 1966 и 1967). В книге рассмотрены все основные разделы современной алгебры (группы, кольца, модули, теория полей, линейная и полилинейная алгебра, представления групп).
Книга будет весьма полезной математикам различных специальностей, студентам, аспирантам и научным работникам. Она может служить основой специальных курсов по алгебре.

Алгебра, Ленг С.
Скачать и читать Алгебра, Ленг С.
 

Общая алгебра, Курош А.Г.

Общая алгебра, Курош А.Г.

   Имя выдающегося советского алгебраиста Александра Геннадиевича Куроша широко известно математикам всего мира. Его монографии "Теория групп" и "Лекции по общей алгебре", переведенные на многие языки, стали настольными книгами каждого алгебраиста.
В 1969 году А. Г. Курош начал читать на механико-математическом факультете Московского университета специальный курс «Общая алгебра». Цель этого курса состояла в том, чтобы обоснованно предложить один из возможных путей дальнейшего развития общей алгебры — заполнение имеющегося разрыва между классическими разделами (теория групп, теория колец и др.) и новыми (теория универсальных алгебр, теория категорий).
Книга написана так легко и прозрачно, что ее может читать всякий, владеющий обычным университетским курсом высшей алгебры.

Общая алгебра, Курош А.Г.
Скачать и читать Общая алгебра, Курош А.Г.
 

Введение в алгебру, часть 3, Основные структуры, Кострикин А.И., 2004

Введение в алгебру, Часть 3, Основные структуры, Кострикин А.И., 2004.

   Алгебраические структуры, известные из первых двух частей учебника (группы, кольца, модули), изучаются на несколько более высоком уровне. Идеи и результаты теории представлений, подкрепленные многочисленными примерами, придают всему изложению общематематическое звучание. Особое место занимают конечно порожденные абелевы группы, теоремы Силова, представления и характеры конечных групп, алгебры над классическими полями. Имеются теоретико-числовые приложения. В заключительной главе изложены основы теории Галуа.
Для студентов младших курсов университетов и ВУЗов с повышенными требованиями по математике.

Введение в алгебру, Часть 3, Основные структуры, Кострикин А.И., 2004
Скачать и читать Введение в алгебру, часть 3, Основные структуры, Кострикин А.И., 2004
 

Основные понятия алгебры, Шафаревич И.Р., 1999

Основные понятия алгебры, Шафаревич И.Р., 1999.

   Книга представляет собой общий обзор алгебры, ее основных понятий и разделов. Наряду с классическими разделами алгебры изложены многие современные понятия и результаты.
Предыдущее издание, вышедшее в 1986 г. в серии ВИНИТИ «Итоги науки и техники», давно стало библиографической редкостью. В новом издании внесен ряд дополнений и уточнений, сделанных автором.
Для широкого круга специалистов, студентов, аспирантов физико-математических специальностей.

Основные понятия алгебры, Шафаревич И.Р., 1999
Скачать и читать Основные понятия алгебры, Шафаревич И.Р., 1999
 

Алгебра и геометрия, Замятин А.П., Булатов А.А., Верников Б.М., 2001

Алгебра и геометрия, Замятин А.П., Булатов А.А., Верников Б.М., 2001.

  Пособие предназначено для студентов, обучающихся специальностям экономического профиля. Наряду с традиционными разделами, обычно включаемыми в курс линейной алгебры и аналитической геометрии, в нем содержатся начальные сведения о комплексных числах и указываются некоторые приложения линейной алгебры к задачам экономического характера. Помимо изложения теории, пособие содержит большое число алгоритмов и примеров решения типовых задач. Кроме того, в конце каждой главы приводится набор задач для самостоятельного решения и четыре варианта самостоятельной работы.

Алгебра и геометрия, Замятин А.П., Булатов А.А., Верников Б.М., 2001
Скачать и читать Алгебра и геометрия, Замятин А.П., Булатов А.А., Верников Б.М., 2001
 

Алгебра, Ван дер Варден Б.Л.

Алгебра, Ван дер Варден Б.Л.

  Современная алгебра, берущая свое начало в замечательных работах Гильберта конца прошлого века, сложилась в общих чертах в 20-е годы. Итогом этого периода становления явилось первое издание настоящей книги, вышедшее в 1931 году. Хотя с тех пор передний край алгебраических исследований продвинулся далеко, книга и сейчас выглядит свежо и современно, — правда, уже не как свод новейших результатов и понятий, а как отличный учебник основ алгебры. Эволюция книги от издания к изданию хорошо отражена в предисловиях автора.

Алгебра, Ван дер Варден Б.Л.
Скачать и читать Алгебра, Ван дер Варден Б.Л.
 

Аналитическая геометрия и линейная алгебра, Умнов А.Е., 2004

Аналитическая геометрия и линейная алгебра, Умнов А.Е., 2004.

  Книга предназначена для студентов физических и технических специальностей университетов и ВУЗов, является введением в теорию линейных пространств, состав и упорядочение материала которого определен ориентацией на прикладной характер специализации читателя. Книга написана на основе лекций, читавшихся автором студентам МФТИ.

Аналитическая геометрия и линейная алгебра, Умнов А.Е., 2004
Скачать и читать Аналитическая геометрия и линейная алгебра, Умнов А.Е., 2004
 

Линейная алгебра и ее применения, Стренг Г., 1980

Линейная алгебра и ее применения, Стренг Г., 1980.

  Книга отличается от традиционных руководств по линейной алгебре тем, что материал излагается в тесной связи с многочисленными приложениями. В виде отдельных глав представлены метод исключения Гаусса, ортогональные проекции, положительно определенные матрицы, линейное программирование и теория игр.
Книга, несомненно, окажется полезной математикам-прикладникам различных специальностей; она заинтересует также и преподавателей, аспирантов и студентов университетов и ВТУЗов, преподающих или изучающих линейную алгебру и ее приложения.

Линейная алгебра и ее применения, Стренг Г., 1980
Скачать и читать Линейная алгебра и ее применения, Стренг Г., 1980
 
Показана страница 54 из 80