Современный польский язык, учебное пособие, Юнаковская А.А., 2004.
В книге изложен курс современного польского языка. Описываются языковые уровни современного польского языка (фонетика и графика, словоизменение и словообразование, синтаксис и лексика). Содержится информация по истории польского литературного языка, показателях польских диалектов, рассматриваются первые грамматики и словари польского языка, приводятся краткие исторические сведения. В ряде случаев анализируются русско-польские языковые соответствия.
Пособие предназначено для студентов-филологов, а также для читателей, желающих изучать этот славянский язык.
ГРАФИКА И ОРФОГРАФИЯ
(Grafika i ortografia)
Основными принципами письма в польском языке являются фонетический и фонолого-морфологический. При этом:1)В обозначении носовых гласных а) не различаются варианты их произношения, в) учитывается происхождение слова.
2)Последоватедьно передается мягкость и твердость согласных.
3)Оглушение и озвончение согласных в зависимости от позиции не отражается в написании (передается основной вид морфемы).
4)Наличие двух графических единиц для обозначения одного звучания обусловлено либо позицией в слове, либо различным происхождением этих звуков
5)Традиционному написанию соответствуют
6)Заимствованные слова могут подчиняться особым правилам.
Определяющими факторами правильного написания в польском языке являются:
а) звучание,
б) стабильность графического облика морфемы,
в) позиция звука в слове,
г) происхождение звука,
д) наличие морфологических чередований,
е) происхождение слова.
2004
Современный польский язык, учебное пособие, Юнаковская А.А., 2004
Скачать и читать Современный польский язык, учебное пособие, Юнаковская А.А., 2004Сборник упражнений по грамматике испанского языка, Дюкина О.К., 2004
Сборник упражнений по грамматике испанского языка, Дюкина О.К., 2004.
Фрагмент из книги.
II . Traduzca al espcmol:
1. Мы встаем рано. 2. Они умываются холодной водой. 3. Как тебя зовут? 4. Меня зовут Антонио. 5. Вы ложитесь спать рано? 6. Нет, мы ложимся спать поздно. 7. Вы одеваетесь быстро. 8. Дети моют руки. 9. Мальчик надевает пальто. 10. Мы чувствуем себя хорошо. 11. Ты причесываешься. 12. Вы встаете поздно по воскресеньям, 13. Я купаюсь в море. 14. Вся семья садится за стол (sentarse a la mesa). 15. Мы просыпаемся рано, умываемся и одеваемся. 16. Дети засыпают в 10 часов. 17. Их зовут Мария и Фернандо. 18. Девочка смотрится в зеркало (mirarse al espejo). 19. Мы надеваем шапки и пальто. 20. Они просыпаются поздно.
Скачать и читать Сборник упражнений по грамматике испанского языка, Дюкина О.К., 2004Фрагмент из книги.
II . Traduzca al espcmol:
1. Мы встаем рано. 2. Они умываются холодной водой. 3. Как тебя зовут? 4. Меня зовут Антонио. 5. Вы ложитесь спать рано? 6. Нет, мы ложимся спать поздно. 7. Вы одеваетесь быстро. 8. Дети моют руки. 9. Мальчик надевает пальто. 10. Мы чувствуем себя хорошо. 11. Ты причесываешься. 12. Вы встаете поздно по воскресеньям, 13. Я купаюсь в море. 14. Вся семья садится за стол (sentarse a la mesa). 15. Мы просыпаемся рано, умываемся и одеваемся. 16. Дети засыпают в 10 часов. 17. Их зовут Мария и Фернандо. 18. Девочка смотрится в зеркало (mirarse al espejo). 19. Мы надеваем шапки и пальто. 20. Они просыпаются поздно.
LXVII МОСКОВСКАЯ МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА ЗАДАЧИ И РЕШЕНИЯ, Акопян И.В., 2004
LXVII МОСКОВСКАЯ МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА ЗАДАЧИ И РЕШЕНИЯ, Акопян И.В., 2004.
Примеры задач.
6. Все доминошки занимают 64 клетки, поэтому одна клетка всегда свободна. Будем называть ее дыркой. Заметим сначала, что если в (горизонтальном) ряду с дыркой есть хотя бы одна вертикальная доминошка, то одну из таких доминошек можно сделать горизонтальной.
Скачать и читать LXVII МОСКОВСКАЯ МАТЕМАТИЧЕСКАЯ ОЛИМПИАДА ЗАДАЧИ И РЕШЕНИЯ, Акопян И.В., 2004Примеры задач.
6. Все доминошки занимают 64 клетки, поэтому одна клетка всегда свободна. Будем называть ее дыркой. Заметим сначала, что если в (горизонтальном) ряду с дыркой есть хотя бы одна вертикальная доминошка, то одну из таких доминошек можно сделать горизонтальной.
Физика, решение задач повышенной сложности, по материалам городских олимпиад школьников, Манида С.Н., 2004
Физика, решение задач повышенной сложности, по материалам городских олимпиад школьников, Манида С.Н., 2004.
Основное содержание пособия составляют задачи повышенной сложности, предлагавшиеся на школьных олимпиадах по физике. В кишу включено около трехсот пятидесяти задач с решениями. Задачи распределены по тематическим разделам, которым предшествуют комментарии, поясняющие наиболее сложные понятия.
В раздел Добавления" вынесены методические разработки по темам, выходящим за рамки школьного курса физики н редко рассматриваемым в вузах.
Пособие может служить руководством для студентов физических специальностей университетов и педагогических вузов. Оно может быть использовано учителями при подготовке школьников к олимпиадам и вступительным экзаменам в вузы, а учащимися—для самостоятельной работы.
1. ЗАКОН АРХИМЕДА.
Любое тело, погруженное в жидкость, подвергается сжимающему и выталкивающему действию со стороны жидкости.
Представим такую ситуацию: ученый, владеющий современными приборами и мощным математическим аппаратом, решил вычислить силу, выталкивающую из жидкости погруженное в нее тело.
Он экспериментально установит, что на единицу поверхности тела, погруженного в жидкость с плотностью р, действует по нормали к поверхности сила гидростатического давления р, зависящая от глубины погружения h по определенному закону (р = рдН) и не зависящая от ориентации поверхности.
Он сложит векторы сил давления, действующих на различные элементы поверхности тела и направленные по нормали к ним; для этого потребуется вычислить так называемый поверхностный интеграл от некоторой векторной функции по поверхности тела сложной формы. С помощью современного математического аппарата и мощных компьютеров этот интеграл может быть вычислен. Но каково же будет изумление этого ученого, когда окажется, что полученный результат численно равен весу жидкости в объеме погруженной части тела! Этот результат был получен греческим ученым Архимедом 2200 лет назад, причем в общем виде — для тел любой формы!
Скачать и читать Физика, решение задач повышенной сложности, по материалам городских олимпиад школьников, Манида С.Н., 2004Основное содержание пособия составляют задачи повышенной сложности, предлагавшиеся на школьных олимпиадах по физике. В кишу включено около трехсот пятидесяти задач с решениями. Задачи распределены по тематическим разделам, которым предшествуют комментарии, поясняющие наиболее сложные понятия.
В раздел Добавления" вынесены методические разработки по темам, выходящим за рамки школьного курса физики н редко рассматриваемым в вузах.
Пособие может служить руководством для студентов физических специальностей университетов и педагогических вузов. Оно может быть использовано учителями при подготовке школьников к олимпиадам и вступительным экзаменам в вузы, а учащимися—для самостоятельной работы.
1. ЗАКОН АРХИМЕДА.
Любое тело, погруженное в жидкость, подвергается сжимающему и выталкивающему действию со стороны жидкости.
Представим такую ситуацию: ученый, владеющий современными приборами и мощным математическим аппаратом, решил вычислить силу, выталкивающую из жидкости погруженное в нее тело.
Он экспериментально установит, что на единицу поверхности тела, погруженного в жидкость с плотностью р, действует по нормали к поверхности сила гидростатического давления р, зависящая от глубины погружения h по определенному закону (р = рдН) и не зависящая от ориентации поверхности.
Он сложит векторы сил давления, действующих на различные элементы поверхности тела и направленные по нормали к ним; для этого потребуется вычислить так называемый поверхностный интеграл от некоторой векторной функции по поверхности тела сложной формы. С помощью современного математического аппарата и мощных компьютеров этот интеграл может быть вычислен. Но каково же будет изумление этого ученого, когда окажется, что полученный результат численно равен весу жидкости в объеме погруженной части тела! Этот результат был получен греческим ученым Архимедом 2200 лет назад, причем в общем виде — для тел любой формы!
Русская литература XX века, 11 класс, учебник для общеобразовательных учреждений, В 2 частях Часть 1, Смирнова Л.А., Михайлов О.Н., Турков А.М., Пронина Е.П., Журавлева В.П., 2004
Русская литература XX века, 11 класс, учебник для общеобразовательных учреждений, В 2 частях Часть 1, Смирнова Л.А., Михайлов О.Н., Турков А.М., Пронина Е.П., Журавлева В.П., 2004.
Своеобразие реализма.
Общими процессами в искусстве начала века объяснялось и размежевание литературных кругов, и внутреннее их сближение. С начала 1890-х гг. группа символистов провозгласила свое полное неприятие современного им реализма, ошибочно отождествив его с материализмом и объективизмом. С тех пор и началось противоборство двух художественных направлений. Модернисты подозревали чуждых себе писателей (даже самых одаренных, скажем, И. Бунина) в неспособности проникнуть в сущность явления, в сухо-объективистском отражении жизни. Реалисты отрицали «темный набор» мистических понятий, изощренные формы новейшей поэзии.
При всем различии между собой обе группы полемистов были несправедливы друг к другу. Более того, не вызывает сомнения, что по своему глубинному смыслу творческие поиски и тех и других обладали общей устремленностью (о ней будет сказано ниже).
Молодой реализм порубежной эпохи обладал всеми признаками преобразующегося, ищущего и обретающего истину искусства. Причем его создатели шли к своим открытиям путем субъективных мироощущений, раздумий, мечтаний. Эта особенность, рожденная авторским восприятием времени, определила отличие реалистической литературы начала нашего столетия от русской классики.
Купить бумажную или электронную книгу и скачать и читать Русская литература XX века, 11 класс, учебник для общеобразовательных учреждений, В 2 частях Часть 1, Смирнова Л.А., Михайлов О.Н., Турков А.М., Пронина Е.П., Журавлева В.П., 2004Своеобразие реализма.
Общими процессами в искусстве начала века объяснялось и размежевание литературных кругов, и внутреннее их сближение. С начала 1890-х гг. группа символистов провозгласила свое полное неприятие современного им реализма, ошибочно отождествив его с материализмом и объективизмом. С тех пор и началось противоборство двух художественных направлений. Модернисты подозревали чуждых себе писателей (даже самых одаренных, скажем, И. Бунина) в неспособности проникнуть в сущность явления, в сухо-объективистском отражении жизни. Реалисты отрицали «темный набор» мистических понятий, изощренные формы новейшей поэзии.
При всем различии между собой обе группы полемистов были несправедливы друг к другу. Более того, не вызывает сомнения, что по своему глубинному смыслу творческие поиски и тех и других обладали общей устремленностью (о ней будет сказано ниже).
Молодой реализм порубежной эпохи обладал всеми признаками преобразующегося, ищущего и обретающего истину искусства. Причем его создатели шли к своим открытиям путем субъективных мироощущений, раздумий, мечтаний. Эта особенность, рожденная авторским восприятием времени, определила отличие реалистической литературы начала нашего столетия от русской классики.
Элементы теории графов, Домнин Л.Н., 2004
Элементы теории графов, Домнин Л.Н., 2004.
Книга является учебным пособием и состоит из пяти разделов. В первом даны основные понятия и определения теории графов, рассмотрены виды графов и способы их описания. Второй раздел посвящен вопросу о связности ориентированных графов. Важнейший вид графов деревья рассмотрен в третьем разделе. Разобраны задачи описания и пересчета деревьев, а также задача о кратчайшем остове. Четвертый раздел посвящен вопросам пересчета и перечисления путей в графах. Здесь же приведены различные варианты задачи о кратчайшем пути и алгоритмы ее решения. В пятом разделе рассматриваются фундаментальные, эйлеровы и гамильтоновы циклы. Разбираются условия существования и алгоритмы поиска таких циклов в графе.
Пособие подготовлено, но материалам курса лекций, но теории графов, читаемого автором для студентов специальности "Прикладная математика" Пензенского государственного университета. Может быть использовано студентами других специальностей при изучении соответствующих разделов дискретной математики.
Скачать и читать Элементы теории графов, Домнин Л.Н., 2004Книга является учебным пособием и состоит из пяти разделов. В первом даны основные понятия и определения теории графов, рассмотрены виды графов и способы их описания. Второй раздел посвящен вопросу о связности ориентированных графов. Важнейший вид графов деревья рассмотрен в третьем разделе. Разобраны задачи описания и пересчета деревьев, а также задача о кратчайшем остове. Четвертый раздел посвящен вопросам пересчета и перечисления путей в графах. Здесь же приведены различные варианты задачи о кратчайшем пути и алгоритмы ее решения. В пятом разделе рассматриваются фундаментальные, эйлеровы и гамильтоновы циклы. Разбираются условия существования и алгоритмы поиска таких циклов в графе.
Пособие подготовлено, но материалам курса лекций, но теории графов, читаемого автором для студентов специальности "Прикладная математика" Пензенского государственного университета. Может быть использовано студентами других специальностей при изучении соответствующих разделов дискретной математики.
Лекции по теории вероятностей и математической статистике, Володин И.Н., 2004
Лекции по теории вероятностей и математической статистике, Володин И.Н., 2004.
§1. Элементарная теория вероятностей
Лекция 1
Во многих областях человеческой деятельности существуют ситуации. когда определенные явления могут повторяться неограниченное число раз в одинаковых условиях. Анализируя последовательно результаты таких простейших явлений, как подбрасывание монеты, игральной кости, выброс карты из колоды и т.п., мы замечаем две особенности, присущие такого рода экспериментам. Во-первых, не представляется возможным предсказать исход последующего эксперимента по результатам предыдущих, как бы ни было велико число проведенных испытаний. Во-вторых, относительная частота определенных исходов по мере роста числа испытаний стабилизируется, приближаясь к определенному пределу. Следующая таблица служит подтверждением этого замечательного факта, составляющего основу аксиоматического построения теории вероятностей как математической дисциплины.
Скачать и читать Лекции по теории вероятностей и математической статистике, Володин И.Н., 2004§1. Элементарная теория вероятностей
Лекция 1
Во многих областях человеческой деятельности существуют ситуации. когда определенные явления могут повторяться неограниченное число раз в одинаковых условиях. Анализируя последовательно результаты таких простейших явлений, как подбрасывание монеты, игральной кости, выброс карты из колоды и т.п., мы замечаем две особенности, присущие такого рода экспериментам. Во-первых, не представляется возможным предсказать исход последующего эксперимента по результатам предыдущих, как бы ни было велико число проведенных испытаний. Во-вторых, относительная частота определенных исходов по мере роста числа испытаний стабилизируется, приближаясь к определенному пределу. Следующая таблица служит подтверждением этого замечательного факта, составляющего основу аксиоматического построения теории вероятностей как математической дисциплины.
Хрестоматия гитариста, 1-7 классы, Кроха О., 2004
Хрестоматия гитариста, 1-7 классы, Кроха О., 2004.
В учебно-методическое пособие, предназначенное для учащихся ДМШ, вошли оригинальные сочинения отечественных и зарубежных композиторов и переложения классических произведений, народных мелодий и популярной музыки для шестиструнной гитары.
Все сочинения, вошедшие я настоящее издание, представляют собой прекрасный иллюстративно-художественный материал для обучения игре на шестиструнной гитаре.
Сборник адресован учащимся ДМШ, а также любителям домашнего музицирования.
Скачать и читать Хрестоматия гитариста, 1-7 классы, Кроха О., 2004В учебно-методическое пособие, предназначенное для учащихся ДМШ, вошли оригинальные сочинения отечественных и зарубежных композиторов и переложения классических произведений, народных мелодий и популярной музыки для шестиструнной гитары.
Все сочинения, вошедшие я настоящее издание, представляют собой прекрасный иллюстративно-художественный материал для обучения игре на шестиструнной гитаре.
Сборник адресован учащимся ДМШ, а также любителям домашнего музицирования.
Другие статьи...
- Русско-украинский разговорник, Лазарева Е.И., 2004
- Общая и неорганическая химия, Коржуков Н.Г., 2004
- Лекции по математическому анализу, Архипов Г.И., Садовничий В.А., Чубариков В.Н., 2004
- Экология города, Касимов Н.С., 2004
- Экология, Денисов В.В., 2004
- Сетевое администрирование Linux, Стахнов А., 2004
- Конкурентная разведка в Интернет, Дудихин В.В., 2004
- Photoshop CS, Трюки и эффекты, Гурский Ю.А., Васильев А.В., 2004
Показана страница 33 из 44