вектор

Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987

Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987.

Учебник представляет собой второй том курса высшей математики и является продолжением книги Мантурова О В , Матвеева Н. М «Курс высшей математики Линейная алгебра Аналитическая геометрия Дифференциальное исчисление функций одной переменной» (М., 1986) Он предназначен для студентов-заочников инженерно-технических специальностей втузов и написан в соответствии с программой по математике для указанных специальностей Большое внимание уделено разбору примеров и задач. Имеются задачи для самостоятельного решения.

Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987
Скачать и читать Курс высшей математики, интегральное исчисление, дифференциальные уравнения, векторный анализ, учебник для студентов втузов, Шестаков А.А., Малышева И.А., Полозков Д.П., 1987
 

Векторный анализ, задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002

Векторный анализ, задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002.

Предлагаемый сборник задач можно рассматривать как краткий курс векторного анализа, в котором сообщаются без доказательства основные факты с иллюстрацией их на конкретных примерах. Поэтому предлагаемый задачник может быть использован, с одной стороны, дли повторения основ векторного анализа, а с другой — как учебное пособие для лиц, которые, не вдаваясь в доказательства тех или иных предложений и теорем, хотят овладеть техникой операций векторного анализа. При составлении задачника авторы использовали материал, содержащийся в имеющихся курсах векторного исчисления и сборниках задач. Значительная часть задач составлена самими авторами. В начале каждого параграфа приводится сводка основных теоретических положений, определении и формул, а также дается подробное решение 100 примеров.

В книге содержится более 300 задач и примеров для самостоятельного решения. Все они снабжены ответами или указаниями к решению. Имеется некоторое количество задач прикладного характера, которые выбраны так, чтобы их разбор не требовал от читателя дополнительных сведений из специальных дисциплин. Материал шестой главы, посвященной криволинейным координатам и основным операциям векторного анализа в криволинейных координатах, внесен в книгу из тех соображений, чтобы дать читателю хотя бы минимальное количество задач для приобретении необходимых навыков. Сборник задач рассчитан на студентов дневных и вечерних отделений технических вузов, инженеров, а также на студентов-заочников, знакомых с векторной алгеброй и математическим анализом в объеме первых двух курсов.

Векторный анализ, задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002

Скачать и читать Векторный анализ, задачи и примеры с подробными решениями, Краснов М.Л., Киселев А.И., Макаренко Г.И., 2002
 

Аналитическая геометрия, Погорелов А.В., 1968

Аналитическая геометрия, Погорелов А.В., 1968.

   Книга представляет собой ценное руководство по аналитической геометрии. Написана она четким и ясным языком, богата конкретным геометрическим материалом. При сравнительно малом объеме книга излагает с достаточной полнотой все основные вопросы курса. В ней имеется также большое число упражнений и задач, удачно подобранных в методическом отношении.
Книга рассчитана на студентов физико-математических факультетов университетов и пединститутов. Она может быть использована также студентами втузов.

Аналитическая геометрия, Погорелов А.В., 1968

Скачать и читать Аналитическая геометрия, Погорелов А.В., 1968
 

Задачи по планиметрии. Прасолов В.В. 2006

Название: Задачи по планиметрии.

Автор: Прасолов В.В.
2006

   Книга может использоваться в качестве задачника по геометрии для 7-11 классов в сочетании со всеми действующими учебниками по геометрии. В неё включены нестандартные геометрические задачи несколько повышенного по сравнению со школьными задачами уровня. Сборник содержит около 1900 задач с полными решениями и около 150 задач для самостоятельного решения. С помощью этого пособия можно организовать предпрофильную и профильную подготовку по математике, элективные курсы по дополнительным главам планиметрии.
Материалы данного пособия полностью покрывают тематику и сложность заданий олимпиад всех уровней и всех видов экзаменов, включая ЕГЭ и вступительные экзамены в ВУЗы.
Для школьников, преподавателей математики, руководителей математических кружков, студентов педагогических институтов и университетов.

Задачи по планиметрии. Прасолов В.В. 2006

Купить бумажную или электронную книгу и скачать и читать Задачи по планиметрии. Прасолов В.В. 2006
 

Высшая математика - Руководство к решению задач - часть 1 - Лунгу К.Н., Макаров Е.В.

Название: Высшая математика - Руководство к решению задач - часть 1. 2005.

Автор: Лунгу К.Н., Макаров Е.В.

    Настоящее учебное пособие написано авторами на основе многолетнего опыта чтения лекций и проведения практических занятий по высшей математике в Московском государственном Открытом университете на различных факультетах. Его следует рассматривать как некоторое методическое руководство по решению наиболее типичных математических задач. Большое внимание уделяется построению и исследованию графиков функций, вычислению пределов последовательностей и пределов функций. Авторы предлагают разные способы решения задач и используют этот прием для ознакомления читателя с большим количеством действий и выбором простейшего.
Пособие рассчитано на студентов очной, заочной и вечерней форм обучения факультетов, где математика не является профилирующей дисциплиной.

Высшая математика - Руководство к решению задач - часть 1 - Лунгу К.Н., Макаров Е.В.

Скачать и читать Высшая математика - Руководство к решению задач - часть 1 - Лунгу К.Н., Макаров Е.В.
 

Векторные методы решения задач - Кушнир А.И.

Название: Векторные методы решения задач. 1994.

Автор: Кушнир А.И.

В научно-методической литературе почти нет книг о векторных методах решения задач.
Пособие, написанное известным педагогом, специалистом школьной геометрии, включает как векторные задачи, так и задачи классической геометрии, решаемые с помощью векторов.
В книге решены векторные задачи из сборников задач по математике под редакцией М.И. Сканави разных изданий.
Для учащихся школ и техникумов, лицеев и гимназий, классов с углубленным изучением математики, абитуриентов, студентов, учителей и преподавателей ВУЗов.

Векторные методы решения задач - Кушнир А.И.

Скачать и читать Векторные методы решения задач - Кушнир А.И.
 

Алгоритмический подход к решению геометрических задач - Книга для учащихся - Габович И.Г. - 1996

Алгоритмический подход к решению геометрических задач - Книга для учащихся - Габович И.Г. - 1996

   В книге представлен один из эффективных методов решения геометрических задач, основанный на использовании так называемых базисных задач. Приведены решения основных базисных задач планиметрии, стереометрии, векторной алгебры и др. К каждой из них подобраны соответствующие задачи, которые решаются с ее помощью или с помощью других,  рассмотренных ранее (их решения приводятся), и задачи для самостоятельного решения.
   Для учащихся средней общеобразовательной школы.

geometriya_Gabovich

Купить бумажную или электронную книгу и скачать и читать Алгоритмический подход к решению геометрических задач - Книга для учащихся - Габович И.Г. - 1996