Тишин

Дискретная математика в примерах и задачах, Тишин В.В., 2008

Дискретная математика в примерах и задачах, Тишин В.В., 2008.

   Учебное пособие составлено на основании материалов лекционного курса, содержит краткую теорию, варианты заданий и примеры решения по следующим разделам дискретной математики: множества, декартовы произведения, соответствия, отношения, булевы функции, теория алгоритмов, предикаты, комбинаторика, конечные автоматы. Даны основные определения, необходимые для выполнения заданий. Для каждого типа задач предлагается по 30 вариантов заданий, приводится подробный образец решения.
Для преподавателей и студентов технических вузов и университетов, аспирантов, научных работников и инженеров.

Дискретная математика в примерах и задачах, Тишин В.В., 2008
Купить бумажную или электронную книгу и скачать и читать Дискретная математика в примерах и задачах, Тишин В.В., 2008
 

Показательные уравнения и системы показательных уравнений, Тишин В.И., 2002

Показательные уравнения и системы показательных уравнений, Тишин В.И., 2002.
   
  В книге рассматриваются основные методы решения показательных уравнений и систем уравнении. Сделана попытка систематизации уравнений по видам и методам решения.
Все примеры являются конкурсными, т. е. давались на вступительных экзаменах в различные вузы и колледжи.
Способ систематизации уравнений частично взят из электронного учебника Боревского Л. Я., однако методика решения резко отличается.

Показательные уравнения и системы показательных уравнений, Тишин В.И., 2002
Скачать и читать Показательные уравнения и системы показательных уравнений, Тишин В.И., 2002
 

Основные методы решения тригонометрических уравнений, Тишин В.И., 2003

Основные методы решения тригонометрических уравнений, Тишин В.И., 2003.
   
  Решить уравнение 4sin3 x-sin x + cos x = 0.
Это уравнение не является однородным. Перепишем его иначе: sin x - cos x = 4 sin3 x. Умножим левую часть уравнения на 1. а точнее на её значение sin2 x + cos2 х. После приведения подобных слагаемых имеем:
3 sin3 x + sin2 х • cos x - sin x • cos2 x + cos3 x = 0. Это однородное уравнение третьей степени относительно sin x и cos x, cos x = 0. Если cos x = 0. то из уравнения следует sinx=0. что невозможно.

Основные методы решения тригонометрических уравнений, Тишин В.И., 2003
Скачать и читать Основные методы решения тригонометрических уравнений, Тишин В.И., 2003
 

Математика для учителей и учащихся, Системы рациональных алгебраических уравнений, Тишин В.И., 2002

Математика для учителей и учащихся, Системы рациональных алгебраических уравнений, Тишин В.И., 2002.
   
   Если из одного уравнения данной системы (1) выразить одно неизвестное через остальные, а затем подставить это выражение во все другие уравнения системы, то полученная система будет равносильна данной.

Математика для учителей и учащихся, Системы рациональных алгебраических уравнений, Тишин В.И., 2002
Скачать и читать Математика для учителей и учащихся, Системы рациональных алгебраических уравнений, Тишин В.И., 2002
 

Математика для учителей и учащихся, Тишин В.И., 2002

Математика для учителей и учащихся, Тишин В.И., 2002.
   
   Процесс решения уравнения состоит в последовательной замене данного уравнения другим, более простым уравнением. Возникает вопрос о законности такой замены. Всегда ли получается уравнение с тем же множеством решений?

Математика для учителей и учащихся, Тишин В.И., 2002
Скачать и читать Математика для учителей и учащихся, Тишин В.И., 2002
 

Иррациональные уравненият и системы уравнений, Тишин В.И., 2002

Иррациональные уравненият и системы уравнений, Тишин В.И., 2002.
   
   В книге, наряду с традиционными методами решения иррациональных уравнений - возведения обеих частей уравнения в одну и туже степень (впрочем, в несколько более строгой постановке), разбираются методы замены переменных и сведения иррационального уравнения к смешанной алгебраической системе. Метод замечателен тем, что практически все иррациональные уравнения, изучаемые в курсе средней общеобразовательной школы, могут быть заменены алгебраическими системами.

Иррациональные уравнения и системы уравнений, Тишин В.И.
Скачать и читать Иррациональные уравненият и системы уравнений, Тишин В.И., 2002