Приближенные методы математической физики, Учебник для вузов, Власова Б.А., Зарубин В.С., Кувыркин Г.Н., 2001.
Книга является тринадцатым выпуском серии учебников „Математика в техническом университете". Последовательно изложены математические модели физических процессов, элементы прикладного функционального анализа и приближенные аналитические методы решения задач математической физики, а также широко применяемые в научных исследованиях и инженерной практике численные методы конечных разностей, конечных и граничных элементов. Рассмотрены примеры использования этих методов в прикладных задачах. Содержание учебника соответствует курсам лекций, которые авторы читают в МГТУ им. Н.Э. Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Кувыркин
Приближенные методы математической физики, учебник для вузов, Власова Б.А., Зарубин В.С., Кувыркин Г.Н., 2001
Скачать и читать Приближенные методы математической физики, учебник для вузов, Власова Б.А., Зарубин В.С., Кувыркин Г.Н., 2001Вариационное исчисление и оптимальное управление, выпуск 15, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2006
Вариационное исчисление и оптимальное управление, Выпуск 15, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2006.
Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. Учебник завершают примеры из физики, механики и техники, в которых показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.
Купить бумажную или электронную книгу и скачать и читать Вариационное исчисление и оптимальное управление, выпуск 15, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2006Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. Учебник завершают примеры из физики, механики и техники, в которых показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач.
Содержание учебника соответствует курсу лекций, который авторы читают в МГТУ им. Н.Э. Баумана.
Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.
Приближенные методы математической физики, Власова Е.А., Зарубин В.С., Кувыркин Г.Н., 2001
Приближенные методы математической физики, Власова Е.А., Зарубин В.С., Кувыркин Г.Н., 2001.
Книга является тринадцатым выпуском серии учебников „ Математика в техническом университете". Последовательно изложены математические модели физических процессов, элементы прикладного функционального анализа и приближенные аналитические методы решения задач математической физики, а также широко применяемые в научных исследованиях и инженерной практике численные методы конечных разностей, конечных и граничных элементов. Рассмотрены примеры использования этих методов в прикладных задачах. Содержание учебника соответствует курсам лекций, которые авторы читают в МГТУ им. Н.Э. Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать и читать Приближенные методы математической физики, Власова Е.А., Зарубин В.С., Кувыркин Г.Н., 2001Книга является тринадцатым выпуском серии учебников „ Математика в техническом университете". Последовательно изложены математические модели физических процессов, элементы прикладного функционального анализа и приближенные аналитические методы решения задач математической физики, а также широко применяемые в научных исследованиях и инженерной практике численные методы конечных разностей, конечных и граничных элементов. Рассмотрены примеры использования этих методов в прикладных задачах. Содержание учебника соответствует курсам лекций, которые авторы читают в МГТУ им. Н.Э. Баумана. Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Математические модели прикладной механики, Зарубин В.С., Кувыркин Г.Н., Станкевич И.В., 2016
Математические модели прикладной механики, Зарубин В.С., Кувыркин Г.Н., Станкевич И.В., 2016.
Изложены основы построения и анализа математических моделей механических систем, идейное ядро которых составляют математические модели стержней, пластинок и оболочек, что позволяет строить адекватные математические модели в виде совокупности соотношений, достаточно полно и точно отражающих свойства и поведение сложных конструкционных элементов современного технологического оборудования и машиностроения. Содержание учебного пособия соответствует курсам лекций, читаемых в МГТУ им. Н.Э. Баумана.
Для студентов старших курсов, изучающих такие дисциплины, как «Механика деформируемого твердого тела», «Теория упругости и пластичности», «Динамика и прочность машин», «Сопротивление материалов», «Теория оболочек», «Строительная механика конструкций», и аспирантов математических, физических, естественнонаучных кафедр университетов и технических вузов. Может быть полезно научным сотрудникам и инженерам, занятым в области математического моделирования сложных процессов механического деформирования.
Купить бумажную или электронную книгу и скачать и читать Математические модели прикладной механики, Зарубин В.С., Кувыркин Г.Н., Станкевич И.В., 2016Изложены основы построения и анализа математических моделей механических систем, идейное ядро которых составляют математические модели стержней, пластинок и оболочек, что позволяет строить адекватные математические модели в виде совокупности соотношений, достаточно полно и точно отражающих свойства и поведение сложных конструкционных элементов современного технологического оборудования и машиностроения. Содержание учебного пособия соответствует курсам лекций, читаемых в МГТУ им. Н.Э. Баумана.
Для студентов старших курсов, изучающих такие дисциплины, как «Механика деформируемого твердого тела», «Теория упругости и пластичности», «Динамика и прочность машин», «Сопротивление материалов», «Теория оболочек», «Строительная механика конструкций», и аспирантов математических, физических, естественнонаучных кафедр университетов и технических вузов. Может быть полезно научным сотрудникам и инженерам, занятым в области математического моделирования сложных процессов механического деформирования.
Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018
Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018.
Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. На примерах из физики, механики и техники показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач.
Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.
Купить бумажную или электронную книгу и скачать и читать Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. На примерах из физики, механики и техники показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач.
Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.
Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018
Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018.
Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. На примерах из физики, механики и техники показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач. Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.
Купить бумажную или электронную книгу и скачать и читать Вариационное исчисление и оптимальное управление, Ванько В.И., Ермошина О.В., Кувыркин Г.Н., 2018Наряду с изложением основ классического вариационного исчисления и элементов теории оптимального управления рассмотрены прямые методы вариационного исчисления и методы преобразования вариационных задач, приводящие, в частности, к двойственным вариационным принципам. На примерах из физики, механики и техники показана эффективность методов вариационного исчисления и оптимального управления для решения прикладных задач. Для студентов и аспирантов технических университетов, а также для инженеров и научных работников, специализирующихся в области прикладной математики и математического моделирования.
Приближенные методы математической физики, Власова Е.А., Зарубин В.С., Кувыркин Г.Н., 2001
Приближенные методы математической физики, Власова Е.А., Зарубин В.С., Кувыркин Г.Н., 2001.
Книга является тринадцатым выпуском серии учебников „Математика в техническом университете". Последовательно изложены математические модели физических процессов, элементы прикладного функционального анализа и приближенные аналитические методы решения задач математической физики, а также широко применяемые в научных исследованиях и инженерной практике численные методы конечных разностей, конечных и граничных элементов. Рассмотрены примеры использования этих методов в прикладных задачах.
Содержание учебника соответствует курсам лекций, которые авторы читают в МГТУ им, Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Скачать и читать Приближенные методы математической физики, Власова Е.А., Зарубин В.С., Кувыркин Г.Н., 2001Книга является тринадцатым выпуском серии учебников „Математика в техническом университете". Последовательно изложены математические модели физических процессов, элементы прикладного функционального анализа и приближенные аналитические методы решения задач математической физики, а также широко применяемые в научных исследованиях и инженерной практике численные методы конечных разностей, конечных и граничных элементов. Рассмотрены примеры использования этих методов в прикладных задачах.
Содержание учебника соответствует курсам лекций, которые авторы читают в МГТУ им, Н.Э. Баумана.
Для студентов технических университетов. Может быть полезен преподавателям, аспирантам и инженерам.
Математические модели термомеханики, Зарубин В.С., Кувыркин Г.Н., 2002
Математические модели термомеханики, Зарубин В.С, Кувыркин Г.Н., 2002.
Изложены основные подходы к построению математических моделей сплошной среды на основе современных представлений термодинамики необратимых процессов. Главным образом внимание уделено рассмотрению общности построения моделей термоупругой сплошной среды, линейной жидкости, термовязкоупругой и термопластической сред на основе представлений о сплошных средах скоростного типа, средах с внутренними параметрами состояния и средах с памятью.
Для научных работников, инженеров, аспирантов и студентов старших курсов технических университетов, специализирующихся в области механики сплошной среды и математического моделирования.
Скачать и читать Математические модели термомеханики, Зарубин В.С., Кувыркин Г.Н., 2002Изложены основные подходы к построению математических моделей сплошной среды на основе современных представлений термодинамики необратимых процессов. Главным образом внимание уделено рассмотрению общности построения моделей термоупругой сплошной среды, линейной жидкости, термовязкоупругой и термопластической сред на основе представлений о сплошных средах скоростного типа, средах с внутренними параметрами состояния и средах с памятью.
Для научных работников, инженеров, аспирантов и студентов старших курсов технических университетов, специализирующихся в области механики сплошной среды и математического моделирования.
Другие статьи...
Кувыркин
Предыдущая
Следующая
Показана страница 1 из 2