Обучалка в Телеграм

комбинаторика

Перечислительная комбинаторика, Деревья, производящие функции и симметрические функции, том 2, Стенли P., 2009

Перечислительная комбинаторика, Деревья, производящие функции и симметрические функции, Том 2, Стенли P., 2009.

   Книга ведущего специалиста по комбинаторике Р. Стенли является продолжением книги того же автора «Перечислительная комбинаторика», перевод которой на русский язык был осуществлен в 1990 г. в издательстве «Мир».
Она включает такие темы, как композиция производящих функций, деревья, алгебраические производящие функции, D-конечные производящие функции, некоммутативные производящие функции и симметрические функции. Глава о симметрических функциях — это единственное изложение данного предмета, которое может служить вводным курсом для студентов и концентрирует внимание на комбинаторных аспектах, особенно на алгоритме Робинсона-Шенстеда-К нута. Рассматриваются также связи между симметрическими функциями и теорией представлений. Приложение (написанное С. Фоминым) содержит изложение некоторых более глубоких аспектов теории симметрических функций.
Как и в первом томе, упражнения играют ключевую роль в разработке материала. В книге имеется более 250 упражнений, все с решениями или ссылками на решения, многие из которых касаются ранее не опубликованных результатов.
Для студентов и исследователей-математиков, желающих найти приложения комбинаторики в своей работе; эта книга будет также служить авторитетным справочным пособием.

Перечислительная комбинаторика, Деревья, производящие функции и симметрические функции, Стенли P., 2009
Скачать и читать Перечислительная комбинаторика, Деревья, производящие функции и симметрические функции, том 2, Стенли P., 2009
 

Занимательная комбинаторика, Румянцева И.Б., Целищева И.И., 2015

Занимательная комбинаторика, Румянцева И.Б., Целищева И.И., 2015.

   В учебном пособии представлено содержание практических занятий по программе внеурочной деятельности «Занимательная комбинаторика» для учащихся 1, 2, 3 и 4 классов. В пособии представлены комбинаторные задания, эвристические, поисковые, творческие задачи, задачи, связанные с преобразованием математических объектов и др., способствующие развитию гибкости мышления младших школьников.
Учебное пособие адресовано студентам направления подготовки Педагогическое образование при изучении учебной дисциплины «Развитие гибкости мышления детей через решение комбинаторных заданий». Оно будет также полезно специалистам в области психологии, педагогики, математики, практическим работникам сферы начального образования.

Занимательная комбинаторика, Румянцева И.Б., Целищева И.И., 2015
Скачать и читать Занимательная комбинаторика, Румянцева И.Б., Целищева И.И., 2015
 

Экстремальные комбинаторные задачи и их приложения, Баранов В.И., Стечкин Б.С., 2004

Экстремальные комбинаторные задачи и их приложения, Баранов В.И., Стечкин Б.С., 2004.

Изложены три широких класса экстремальных комбинаторных задач: о разбиениях чисел, о системах множеств и о системах векторов. Продемонстрированы возможности практического использования решений экстремальных комбинаторных задач в информатике и вычислительной технике. Особое место отведено новому направлению - экстремальным задачам о разбиении чисел, основывающемуся на понятии вложимости разбиений чисел. Вложимость разбиений чисел позволяет формализовать важные практические постановки: проектирование технических и программных средств, распределение ресурсов ЭВМ, задачу о рюкзаке, задачу о заполнении мешков, транспортные задачи. Первое издание — 1989 г. Для научных работников в области математики, кибернетики, информатики и вычислительной техники, а также для студентов и инженеров.

Экстремальные комбинаторные задачи и их приложения, Баранов В.И., Стечкин Б.С., 2004
Купить бумажную или электронную книгу и скачать и читать Экстремальные комбинаторные задачи и их приложения, Баранов В.И., Стечкин Б.С., 2004
 

Введение в комбинаторику и теорию вероятностей, учебное пособие, Гитман М.Б., Останина Т.В., Цылова Е.Г., 2015

Введение в комбинаторику и теорию вероятностей, Учебное пособие, Гитман М.Б., Останина Т.В., Цылова Е.Г., 2015.  

Рассматриваются такие разделы математики, как введение в комбинаторный анализ и теорию вероятностей. Излагаются основные положения комбинаторики и теории вероятностей, приведены задачи и упражнения с примерами решений, позволяющее студентам освоить методы решения весьма непростых задач. Предназначено для студентов высших и средних учебных заведений, обучающихся по естественно-научным и инженерным направлениям подготовки.

Введение в комбинаторику и теорию вероятностей, Учебное пособие, Гитман М.Б., Останина Т.В., Цылова Е.Г., 2015
Скачать и читать Введение в комбинаторику и теорию вероятностей, учебное пособие, Гитман М.Б., Останина Т.В., Цылова Е.Г., 2015
 

Линейно-алгебраический метод в комбинаторике, Райгородский А.М., 2007

Линейно-алгебраический метод в комбинаторике, Райгородский А.М., 2007.

Современная комбинаторика — это весьма многогранная и активно развивающаяся область математики. В XX веке был разработан ряд мощных методов, позволяющих решать многие трудные задачи комбинаторики. Среди этих методов особое место занимает линейно алгебраический метод. .С его помощью удалось добиться прорыва в таких классических проблемах, Как, например, проблема Борсука о разбиении множеств на части меньшего диаметра. В книге излагаются основы метода и описываются наиболее яркие примеры его применения. Для понимания материала достаточно знания элементарных понятий линейной алгебры и математического анализа. Книга будет полезна студентам и аспирантам, интересующимся комбинаторным анализом, а также специалистам в области дискретной математики.

Линейно-алгебраический метод в комбинаторике, Райгородский А.М., 2007
Скачать и читать Линейно-алгебраический метод в комбинаторике, Райгородский А.М., 2007
 

Алгебры множеств и комбинаторика ультрафильтров, Гринблат Л.Ш., 2017

Алгебры множеств и комбинаторика ультрафильтров, Гринблат Л.Ш., 2017.

Центральная задача настоящей монографии заключается в следующем. Пусть на некоем множестве задано не более чем счётное семейство алгебр подмножеств, и для каждой алгебры  существуют подмножества, ей не принадлежащие. При каких условиях существует подмножество, не принадлежащее всем алгебрам? Мы занимаемся также вариациями этой задачи. Если  семейство алгебр конечное, мы приходим к комбинаторным задачам о конечных множествах. Если же семейство алгебр счётное, мы приходим к трудным задачам теории множеств (в  монографии приведено доказательство глубокой теоремы Гитика—Шелаха) и к комбинаторике ультрафильтров. Книга предназначена для специалистов в области математики.

Алгебры множеств и комбинаторика ультрафильтров, Гринблат Л.Ш., 2017
Купить бумажную или электронную книгу и скачать и читать Алгебры множеств и комбинаторика ультрафильтров, Гринблат Л.Ш., 2017
 

Математика: логика, теория множеств и комбинаторика, учебное пособие для СПО, Вечтомов Е.М., Широков Д.В., 2019

Математика: логика, теория множеств и комбинаторика,  Учебное пособие для СПО, Вечтомов Е.М., Широков Д.В., 2019.

В данном учебном пособии представлен вводный курс математики, который направлен на формирование и развитие логико-математической культуры у студентов. Изложены основы современной математики: начала логики, теории множеств и комбинаторики. Помимо теоретической части издание содержит Практикум, в котором предложено большое количество разнообразных заданий, рассчитанных как на аудиторную, так и на самостоятельную работу студентов.

Математика: логика, теория множеств и комбинаторика,  Учебное пособие для СПО, Вечтомов Е.М., Широков Д.В., 2019
Купить бумажную или электронную книгу и скачать и читать Математика: логика, теория множеств и комбинаторика, учебное пособие для СПО, Вечтомов Е.М., Широков Д.В., 2019
 

Комбинаторные задачи на графах, Ильев В.П., 2013

Комбинаторные задачи на графах, Ильев В.П., 2013.

Рассматриваются известные комбинаторные задачи на графах в алгоритмической постановке, приводятся алгоритмы решения этих задач. Обсуждаются основные структуры данных для представления графов в памяти компьютера. Излагается введение в теорию сложности вычислений.
Приведён необходимый теоретический материал и упражнения для практических занятий второй части учебного курса «Теория графов и комбинаторные алгоритмы».
Для студентов математических специальностей очной формы обучения.

Комбинаторные задачи на графах, Ильев В.П., 2013
Скачать и читать Комбинаторные задачи на графах, Ильев В.П., 2013
 
Показана страница 3 из 5