Обучалка в Телеграм

Казарян

Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005

Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005.
 
Книга является учебным пособием по действительному анализу. Все основные утверждения курса изложены в виде системы задач, снабженных полными решениями. Основное содержание книги составляет изложение теории меры и интеграла Лебега. Для студентов и аспирантов физико-математических специальностей, в том числе для самостоятельного изучения курса действительного анализа, а также для преподавателей, ведущих по этому курсу семинарские занятия.

Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005
Скачать и читать Действительный анализ в задачах, Ульянов П.Л., Бахвалов А.Н., Дьяченко М.И., Казарян К.С., Сифуэнтес П., 2005
 

Дифференциальные формы, расслоения, связности, Казарян М.Э., 2002

Дифференциальные формы, расслоения, связности, Казарян М.Э., 2002.

  Брошюра написана по материалам цикла занятий, проведенных автором в Летней школе «Современная математика» в Дубне в июле 2001 года.
Читатель знакомится с основными понятиями дифференциальной геометрии — дифференциальными формами, расслоениями, метриками, связностями. При этом изложение ведется на языке, который не требует использования сложных формул с многоэтажными индексами, столь обычных для данного предмета.
Брошюра адресована старшим школьникам и младшим студентам.

Дифференциальные формы, расслоения, связности, Казарян М.Э., 2002
Купить бумажную или электронную книгу и скачать и читать Дифференциальные формы, расслоения, связности, Казарян М.Э., 2002
 

Курс дифференциальной геометрии, Казарян М.Э., 2002

Курс дифференциальной геометрии, Казарян М.Э., 2002.

  Брошюра написана по материалам цикла занятий, проведенных автором в Летней школе «Современная математика» в Дубне в июле 2001 года. Читатель знакомится с основными понятиями дифференциальной геометрии — дифференциальными формами, расслоениями, метриками, связностями. При этом изложение ведется на языке, который не требует использования сложных формул с многоэтажными индексами, столь обычных для данного предмета.
Брошюра адресована старшим школьникам и младшим студентам.

Курс дифференциальной геометрии, Казарян М.Э., 2002
Скачать и читать Курс дифференциальной геометрии, Казарян М.Э., 2002
 
Показана страница 2 из 2