Все задачи снабжены ответами.
На выполнение каждой письменной работы давалось 4 часа в 1989 г. и 4 часа 30 минут в 1990 г.
Задачи.
1. Функция у=-26х³+24х²-6х является суммой кубов двух линейных функций. Найти эти функции. На продолжении стороны AD ромба ABCD за точку D взята точка К. Прямые АС и ВК пересекаются в точке Q. Известно, что АК=14 и что точки A, В и Q лежат на окружности радиуса 6, центр которой принадлежит отрезку АК. Найти длину отрезка ВК. В основании пирамиды SABC лежит остроугольный равнобедренный треугольник ABC (АВ = ВО) площади 2. Ребро SA является высотой пирамиды. Рассматриваются проекции пирамиды SABC на всевозможные плоскости, проходящие через прямую АВ. Наибольшая из площадей таких проекций равна 2,5, а наименьшая - 3/√5. Найти объем пирамиды.
2. Даны правильная четырехугольная пирамида SABCD и цилиндр, центр симметрии которого лежит на прямой SO (SO - высота пирамиды). Точка Е- середина апофемы грани BSC, точка F принадлежит ребру SD, причем SF = 2FD. Прямоугольник, являющийся одним из осевых сечений цилиндра, расположен так, что две его вершины лежат на прямой АВ, а одна из двух других вершин лежит на прямой EF. Найти объем цилиндра, если SO = 12, АВ = 4.
3. С горизонтальной поверхности земли бросили мяч и он упал на землю со скоростью V = 9,8 м/с под углом ᵝ - 30° к горизонту. Модуль вертикальной составляющей скорости в точке бросания был на 20% больше, чем в точке падения. Найти время полета мяча. Считать, что сила сопротивления движению мяча пропорциональна его скорости.