Название: Решебник - Высшая математика.
Автор: Зимина О.В., Кириллов А.И., Сальникова Т.А.
2005.
Книга содержит примеры решения почти всех типовых задач по высшей математике. Каждой задаче отведен отдельный раздел, содержащий общую постановку задачи, план ее решения с необходимыми теоретическими пояснениями и решение конкретного примера. Кроме того, в раздел включены десять задач для самостоятельного решения и ответы к ним.
Для студентов и преподавателей технических, экономических и сельскохозяйственных вузов; может быть использована как при очной, так и при дистанционной формах обучения.
правило Крамера
Решебник - Высшая математика - Зимина О.В., Кириллов А.И., Сальникова Т.А.
Скачать и читать Решебник - Высшая математика - Зимина О.В., Кириллов А.И., Сальникова Т.А.Высшая математика в примерах и задачах, том 1, Черненко
Название: Высшая математика в примерах и задачах - Том 1.
Автор: Черненко В.Д.
2003.
Предлагаемое учебное пособие содержит краткий теоретический материал по определителям и матрицам, системам линейных уравнений, векторной и линейной алгебре, аналитической геометрий на плоскости и в пространстве, функциям и вычислению, пределов, дифференциальному исчислению функций одной и нескольких переменных, приложениям дифференциального исчисления к геометрии, неопределенному и определенному интегралам и приложениям определенного интеграла к задачам геометрии, механики и физики, а также большое количество примеров, иллюстрирующих основные методы решения.
Купить бумажную или электронную книгу и скачать и читать Высшая математика в примерах и задачах, том 1, ЧерненкоАвтор: Черненко В.Д.
2003.
Предлагаемое учебное пособие содержит краткий теоретический материал по определителям и матрицам, системам линейных уравнений, векторной и линейной алгебре, аналитической геометрий на плоскости и в пространстве, функциям и вычислению, пределов, дифференциальному исчислению функций одной и нескольких переменных, приложениям дифференциального исчисления к геометрии, неопределенному и определенному интегралам и приложениям определенного интеграла к задачам геометрии, механики и физики, а также большое количество примеров, иллюстрирующих основные методы решения.
Сборник задач по линейной алгебре, Проскуряков И.В., 1966
Сборник задач по линейной алгебре - Проскуряков И.В. - 1966
За последние годы в содержание обязательных алгебраических курсов, читаемых на механико-математическом факультете Московского университета, внесены значительные изменения. С 1964 года на втором семестре читается курс «Линейная алгебра и геометрия», в котором изучаются n-мерное аффинное (точечно-векторное) пространство тензорная алгебра н другие вопросы, не входившие ранее в курс высшей алгебры. С другой стороны, в курсе высшей алгебры на первом семестре рассматриваются понятия идеала, фактор-кольца и связанные с ними свойства полей и многочленов, а на третьем семестре одним из основных стало понятие модуля над кольцом.
В связи с этим и третье издание этого задачника внесены дополнения. Расширен параграф о кольцах и полях и добавлены пять новых параграфов, содержащие дополнительный материал о линейных пространствах, линейных и билинейных функциях, модулях, аффинных пространствах и тензорах.
Кроме того, заменены новыми или существенно изменены некоторые задачи или их решения, а также исправлены замеченные неточности и опечатки.
Для удобства использования третьего издания задачника наряду с прежними укажем, что в третьем издании заменены новыми или существенно изменены задачи (или их решения) с номерами: 629 631, 1339, 1374, 1375, 1491, 1647, 1654, 1689, 1705, 1706, 1708. Все задачи, начиная с 1754, являются новыми.
Купить бумажную или электронную книгу и скачать и читать Сборник задач по линейной алгебре, Проскуряков И.В., 1966За последние годы в содержание обязательных алгебраических курсов, читаемых на механико-математическом факультете Московского университета, внесены значительные изменения. С 1964 года на втором семестре читается курс «Линейная алгебра и геометрия», в котором изучаются n-мерное аффинное (точечно-векторное) пространство тензорная алгебра н другие вопросы, не входившие ранее в курс высшей алгебры. С другой стороны, в курсе высшей алгебры на первом семестре рассматриваются понятия идеала, фактор-кольца и связанные с ними свойства полей и многочленов, а на третьем семестре одним из основных стало понятие модуля над кольцом.
В связи с этим и третье издание этого задачника внесены дополнения. Расширен параграф о кольцах и полях и добавлены пять новых параграфов, содержащие дополнительный материал о линейных пространствах, линейных и билинейных функциях, модулях, аффинных пространствах и тензорах.
Кроме того, заменены новыми или существенно изменены некоторые задачи или их решения, а также исправлены замеченные неточности и опечатки.
Для удобства использования третьего издания задачника наряду с прежними укажем, что в третьем издании заменены новыми или существенно изменены задачи (или их решения) с номерами: 629 631, 1339, 1374, 1375, 1491, 1647, 1654, 1689, 1705, 1706, 1708. Все задачи, начиная с 1754, являются новыми.
Курс высшей алгебры, учебник, Курош А.Г., 1968
Курс высшей алгебры - Учебник - Курош А.Г. - 1968
Книга обеспечивает весь обязательный университетский курс высшей алгебры, а не только его первые два семестра. В книгу включено несколько новых глав. Одна из них посвящена основам теории групп, а остальные относятся к линейной алгебре - теория линейных пространств, теория евклидовых пространств и жордановой нормальной формы матрицы.
Студентам будет удобно иметь весь обязательный материал собранным в одном учебнике и изложенным единым стилем.
Купить бумажную или электронную книгу и скачать и читать Курс высшей алгебры, учебник, Курош А.Г., 1968Книга обеспечивает весь обязательный университетский курс высшей алгебры, а не только его первые два семестра. В книгу включено несколько новых глав. Одна из них посвящена основам теории групп, а остальные относятся к линейной алгебре - теория линейных пространств, теория евклидовых пространств и жордановой нормальной формы матрицы.
Студентам будет удобно иметь весь обязательный материал собранным в одном учебнике и изложенным единым стилем.