Название: Объемы многогранников. 2002.
Автор: Сабитов И.Х.
Изложение материала начинается с формулы, выражающей объем тетраэдра через длины его ребер. Эту формулу можно найти почти во всех справочниках по математике, но мало кто знает ее историю. В брошюре разбираются доказательства этой формулы, принадлежащие Тарталье (XVI век) и Эйлеру (XVIII век), и даются современные их варианты. Сформулирована и прокомментирована теорема, обобщающая формулу объема тетраэдра на любые многогранники и дающая как простое следствие решение проблемы "кузнечных мехов", утверждающей постоянство объема изгибаемого многогранника. Даются также примеры изгибаемых многогранников.
Текст брошюры представляет собой дополненную обработку записи лекции для школьников 9-11 классов, прочитанной автором на Малом мехмате МГУ 10 марта 2001 года (запись Е. А. Чернышевой). Брошюра рассчитана на широкий круг читателей, интересующихся математикой: школьников старших классов, студентов младших курсов, учителей.
многогранник
Презентация - Правильные выпуклые многогранники
Презентация - Правильные выпуклые многогранники
В Презентации:
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Куб (гексаэдр)
Правильный додекаэдр
Названия многогранников
Скачать и читать Презентация - Правильные выпуклые многогранникиВ Презентации:
Правильный тетраэдр
Правильный октаэдр
Правильный икосаэдр
Куб (гексаэдр)
Правильный додекаэдр
Названия многогранников
Избранные задачи и теоремы элементарной математики - Шклярский Д.О., Ченцов Н.Н., Яглом И.М., часть 3, геометрия, стереометрия, 2000
Избранные задачи и теоремы элементарной математики - Шклярский Д.О., Ченцов Н.Н., Яглом И.М. - Часть 3 - Геометрия - Стереометрия - 2000
Настоящая книга представляет собой третью часть сборника задач, составленного по материалам школьного математического кружка при Московском государственном университете им. М. В. Ломоносова. Она содержит задачи по стереометрии и задачи на разрезание и складывание фигур на плоскости и в пространстве. Как и первые две части «Избранных задач и теорем элементарной математики», настоящая третья часть состоит из условий задач, ответов и указаний и, наконец, решений. Как решения, так и ответы и указания даны ко всем задачам книги. Кроме того, там, где это необходимо, условия задач снабжены пояснениями.
Эта книга рассчитана на школьников старших классов - участников математических кружков, на руководителей школьных математических кружков, а также на руководителей и участников кружков по элементарной математике в педагогических институтах. Значительную часть книги составляют «циклы» задач, связанных общей темой, причем задачи цикла вместе с их решениями дают более или менее законченную теорию излагаемого вопроса. Каждый такой цикл может служить темой одного-двух занятий математического кружка
Скачать и читать Избранные задачи и теоремы элементарной математики - Шклярский Д.О., Ченцов Н.Н., Яглом И.М., часть 3, геометрия, стереометрия, 2000Настоящая книга представляет собой третью часть сборника задач, составленного по материалам школьного математического кружка при Московском государственном университете им. М. В. Ломоносова. Она содержит задачи по стереометрии и задачи на разрезание и складывание фигур на плоскости и в пространстве. Как и первые две части «Избранных задач и теорем элементарной математики», настоящая третья часть состоит из условий задач, ответов и указаний и, наконец, решений. Как решения, так и ответы и указания даны ко всем задачам книги. Кроме того, там, где это необходимо, условия задач снабжены пояснениями.
Эта книга рассчитана на школьников старших классов - участников математических кружков, на руководителей школьных математических кружков, а также на руководителей и участников кружков по элементарной математике в педагогических институтах. Значительную часть книги составляют «циклы» задач, связанных общей темой, причем задачи цикла вместе с их решениями дают более или менее законченную теорию излагаемого вопроса. Каждый такой цикл может служить темой одного-двух занятий математического кружка
многогранник
Предыдущая
Следующая
Показана страница 2 из 2