От задачи к задаче - по аналогии, Развитие математического мышления, Эрдниев О.П., 1998.
Обычно обучение математике ограничивается решением пусть разнообразных, но готовых, придуманных авторами учебников задач. Однако гораздо увлекательнее и продуктивнее, осознав процесс математического творчества, научиться создавать собственные задачи и теоремы и находить способы их решения. Этому важному творческому умению и посвящена книга. Авторы, опираясь на свой практический опыт обучения, подробно раскрывают технологию изобретения новых теорем посредством умозаключений по аналогии. Во многих случаях прототипом оригинальных суждений служат исторические задачи, носящие имена первооткрывателей. Для учащихся, учителей математики и лиц, интересующихся математикой.
Эрдниев
От задачи к задаче - по аналогии, Развитие математического мышления, Эрдниев О.П., 1998
Скачать и читать От задачи к задаче - по аналогии, Развитие математического мышления, Эрдниев О.П., 1998От задачи к задаче - по аналогии, Эрдниев О.П., 1998
Название: От задачи к задаче - по аналогии.
Автор: Эрдниев О.П.
1998
Обычно обучение математике ограничивается решением пусть разнообразных, но готовых, придуманных авторами учебников задач. Однако гораздо увлекательнее и продуктивнее, осознав процесс математического творчества, научиться создавать собственные задачи и теоремы и находить способы их решения. Этому важному творческому умению и посвящена книга.
Авторы, опираясь на свой практический опыт обучения, подробно раскрывают технологию изобретения новых теорем посредством умозаключений по аналогии. Во многих случаях прототипом оригинальных суждений служат исторические задачи, носящие имена первооткрывателей (школьный курс 7—9 классов).
Для учащихся, учителей математики и лиц, интересующихся математикой.
Скачать и читать От задачи к задаче - по аналогии, Эрдниев О.П., 1998Автор: Эрдниев О.П.
1998
Обычно обучение математике ограничивается решением пусть разнообразных, но готовых, придуманных авторами учебников задач. Однако гораздо увлекательнее и продуктивнее, осознав процесс математического творчества, научиться создавать собственные задачи и теоремы и находить способы их решения. Этому важному творческому умению и посвящена книга.
Авторы, опираясь на свой практический опыт обучения, подробно раскрывают технологию изобретения новых теорем посредством умозаключений по аналогии. Во многих случаях прототипом оригинальных суждений служат исторические задачи, носящие имена первооткрывателей (школьный курс 7—9 классов).
Для учащихся, учителей математики и лиц, интересующихся математикой.