Обучалка в Телеграм

дифференцируемость

Как решать задачи по математике на вступительных экзаменах, Мельников И.И., Сергеев И.Н., 1990

Как решать задачи по математике на вступительных экзаменах - Мельников И.И., Сергеев И.Н. - 1990

   В книге изложены ключевые методы решения задач по математике, демонстрирующиеся на примере задач, предлагавшихся на вступительных экзаменах в МГУ. Большое внимание уделено объяснению логики решений, подробному анализу типичных ошибок абитуриентов, особенностям конкурсных задач на различных факультетах. Освещены следующие темы: решение алгебраических уравнений и неравенств, тригонометрические уравнения и неравенства, текстовые задачи, логарифмические и показательные уравнения и неравенства, задачи с параметрами, свойства функций и графики и др. Приводится большое количество задач для самостоятельного решения.
   Для учащихся средних школ и абитуриентов, готовящихся к вступительным экзаменам в вузы, может быть использована учителями средних школ.

kak_reshat_zadachi_po_matematike

Скачать и читать Как решать задачи по математике на вступительных экзаменах, Мельников И.И., Сергеев И.Н., 1990
 

Функции комплексного переменного: теория и практика, справочное пособие по высшей математике, том 4, Боярчук А.К., 2001

Функции комплексного переменного: теория и практика - Справочное пособие по высшей математике. Том 4 - Боярчук А.К. - 2001

Том 4 является логическим продолжением трех предыдущих ориентированных на практику томов и содержит более четырехсот подробно решенных задач, но при этом отличается более детальным изложением теоретических вопросов и может служить самостоятельным замкнутым курсом теории функций комплексного переменного. Помимо вопросов, обычно включаемых в курсы такого рода, в книге излагается ряд нестандартных - таких, как интеграл Ньютона-Лейбница и производная Ферма-Лагранжа.
Пособие предназначено для студентов, преподавателей и работников физико-математических, экономических и инженерно-технических специальностей, специалистов по прикладной математике, а также лиц, самостоятельно изучающих высшую математику.
Скачать и читать Функции комплексного переменного: теория и практика, справочное пособие по высшей математике, том 4, Боярчук А.К., 2001