Обучалка в Телеграм

Дайзенрот

Математика в машинном обучении, Дайзенрот М.П., Альдо Ф.А., Чен С.О., 2024

Математика в машинном обучении, Дайзенрот М.П., Альдо Ф.А., Чен С.О., 2024.
 
Фундаментальные математические дисциплины, необходимые для понимания машинного обучения, — это линейная алгебра, аналитическая геометрия, векторный анализ, оптимизация, теория вероятностей и статистика. Традиционно все эти темы размазаны по различным курсам, поэтому студентам, изучающим data science или computer science, а также профессионалам в МО, сложно выстроить знания в единую концепцию. Эта книга самодостаточна: читатель знакомится с базовыми математическими концепциями, а затем переходит к четырем основным методам МО: линейной регрессии, методу главных компонент, гауссову моделированию и методу опорных векторов. Тем, кто только начинает изучать математику, такой подход поможет развить интуицию и получить практический опыт в применении математических знаний, а для читателей с базовым математическим образованием книга послужит отправной точкой для более продвинутого знакомства с машинным обучением.

Математика в машинном обучении, Дайзенрот М.П., Альдо Ф.А., Чен С.О., 2024
Скачать и читать Математика в машинном обучении, Дайзенрот М.П., Альдо Ф.А., Чен С.О., 2024