Предисловие.
В 30-е годы были сделаны два открытия, которые изменили всю математику. Во-первых, в 1933 году А. Хааром был установлен факт существования меры, инвариантной относительно сдвигов на локально компактной группе с первой аксиомой счетности. Дж. фон Нейман в 1936 году доказал единственность меры Хаара для локально компактных групп со второй аксиомой счетности. И, наконец, в 1940 году А. Вейль снял ограничения с обеих теорем, установив одновременно теорему, обратную к теореме Хаара, а именно: он показал, что если на полной топологической группе существует ненулевая левоинвариантная мера (борелевская и регулярная), то эта группа локально компактная. Второе открытие — это установление в 1934 году Л.С. Понтрягиным теоремы двойственности для локально компактных абелевых групп со второй аксиомой счетности. В 1935 году Э. ван Кампен доказал этот результат, сняв все ограничения.








